Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz


IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 27, Issue 1

Issues

Defunct Satellites in Nearly Polar Orbits: Long-term Evolution of Attitude Motion

Dmitry Pritykin / Sergey Efimov / Vladislav Sidorenko
  • Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Keldysh, Russia
  • Moscow Institute of Physics and Technology, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-20 | DOI: https://doi.org/10.1515/astro-2018-0029

Abstract

Low Earth orbits (LEO) are known as a region of high space activity and, consequently, space debris highest density. Launcher upper stages and defunct satellites are the largest space debris objects, whose collisions can result in still greater pollution, rendering further space missions in LEO impossible. Thus, space debris remediation is necessary, and the LEO region is a primary target of active debris removal (ADR) projects. However, ADR planning requires at least an approximate idea of the candidate objects’ attitude dynamics, which is one of the incentives for our study. This paper is mainly focused on modeling and simulating the attitude dynamics of defunct satellites. We consider a “boxwing” configuration satellite with an ellipsoid of inertia close to an oblate ellipsoid of revolution. The dynamical model takes into account the gravity-gradient torque, the torque due to the residual magnetic moment, and the torque due to eddy currents induced by the interaction of conductive materials with the geomagnetic field. A better understanding of the intermediate phase of the exponential deceleration and existing final regimes is achieved owing to a more accurate model of the eddy-current torque than in most prior research.We also show the importance of orbital precession, which contributes to the overall attitude motion evolution.

Keywords: space debris; attitude dynamics; eddy-current torque; residual magnetic moment

References

  • Aslanov, V. & Yudintsev, V. 2013, Acta Astronaut., 9, 149-156.CrossrefGoogle Scholar

  • Beletsky, V.V. 1975, Attitude motion of a satellite in gravitational field, Moscow State University Publishing House.Google Scholar

  • Beletsky, V.V., Lopes, R.V.F., & Pivovarov, M.L.1999, Chaos, 9, 493-498.PubMedCrossrefGoogle Scholar

  • Beskin, G.M., Karpov, S. V., Biryukov, A. V., Bondar, S. F., Ivanov, E. A., Katkova, E. V et al. 2017, Astrophysical Bulletin, 72, 1, 81-92.Google Scholar

  • Bonnal, C., Ruault, J.-M., & Desjean, M.-Ch. 2013, Acta Astronaut., 85, 51-60.CrossrefGoogle Scholar

  • Dearborn, M., Tippets, R., & Chun, F.K. 2012, Proceedings of the International Astronautical Congress, Naples, Italy, IAC-12- A6.1.2.Google Scholar

  • Efimov, S., Pritykin, D., & Sidorenko, V. 2017, Advances in the Astronautical Sciences, 161, 131-142.Google Scholar

  • Efimov, S., Pritykin, D. & Sidorenko, V. 2018, Celestial Mechanics and Dynamical Astronomy, 130(10), 62.Google Scholar

  • Efroimsky, M., Lazarian, A., & Sidorenko, V. 2002, In: S.G. Pandalai (Ed.), Recent Research Developments in Astrophysics, Research Signpost, India, 59-116.Google Scholar

  • Golubkov, V.V. 1972, Cosmic Research, 10(1), 20-39.Google Scholar

  • Keinert, B., Innmann, M., Sänger, M., & Stamminger, M. 2015, ACM Transactions on Graphics, 34 (6), art. no. 193.Web of ScienceGoogle Scholar

  • Kucharski, D., Kirchner, G., Koidl, F., Fan, C., Carman, R., Moore, C. et al., 2014, IEEE Transactions on Geoscience and Remote Sensing, 52, 7651-7657.CrossrefGoogle Scholar

  • Kucharski, D., Bennett, J., & Kirchner, G. 2016, Laser De-spin Maneuver for an Active Debris Removal Mission- A Realistic Scenario for Envisat, Advanced Maui Optical and Space Surveillance Technologies (AMOSTech) Conference, Sept. 19-23.Google Scholar

  • Kucharski, D., Kirchner, G., Bennett, J.C., Lachut, M., Sośnica, K., Koshkin, N. et al. 2017, Earth and Space Science, 4, 661-668.Google Scholar

  • Kudak, V.I., Epishev, V.P., Perig, V.M., & Neybauer, I.F. 2017, Astrophysical Bulletin, 72, 340-348.Google Scholar

  • Li-qun, Ch. & Yam-zhu, L. 2003, Applied mathematics and Mechanics, 24, 434-440.Google Scholar

  • Lin, H.-Y. & Zhao, C.-Y. 2015, Astrophysics Space Science, 357, 167.Google Scholar

  • Martynenko, U.G. 1985, Cosmic Research, 23, 347-357.Google Scholar

  • Ojakangas, G.W., Anz-Meador, P., & Cowardin, H. 2012, In: 14th Annual Maui Optical and Space and Surveillance Technologies Conference (11-14 September 2012, Maui, HI, United States), Proceedings of AMOS Conference.Google Scholar

  • Ortiz Gomez, N., & Walker, S.J. 2015, Advances in Space Research, 56, 494-508.Google Scholar

  • Piergentili, F., Santoni, F., Seitzer, P. 2017, IEEE Transactions on Aerospace and Electronic Systems, 53 (1), art. no. 7819454, 81-90.Google Scholar

  • Pourtau, J.-C. & Terral, M. 2005, European Test & Telemetry Conference, ETTC 2005, Toulouse, France.Google Scholar

  • Praly, N., Hillion, M., Bonnal C., Laurent-Varin, J., and Petit, N. 2012, Acta Astronaut., 76, 145-153.CrossrefGoogle Scholar

  • Santoni, F., Cordelli, E., Piergentili, F. 2013, J. Spacecraft Rock, 50 (3), 701-708.Google Scholar

  • Sagnières, L.B.M. & Sharf, I. 2017, Advances in Space Research, 59, 1128-1143.Google Scholar

  • Shrivastava, S.K., Modi, V.J. 1985, J. Guidance, 6, 461-471.Google Scholar

  • Šilha, J., Pittet, J.-N., Hamara, M., Schildknecht, T. 2018, Advances in Space Research, 61(3), 844-861.CrossrefGoogle Scholar

  • Sommer, S., Rosebrock, J., Cerutti-Maori, D., & Leushacke, L. 2017, Temporal analysis of ENVISAT’s rotational motion,In: 7th European Conference on Space Debris, ESA/ESOC, (18-21 April 2017, Darmstadt, Germany)Google Scholar

  • Yanagisawa, T. & Kurosaki, H. 2003, Advances in Space Research, 50(1), 136-145.CrossrefGoogle Scholar

About the article

Received: 2017-11-15

Accepted: 2018-06-01

Published Online: 2018-11-20

Published in Print: 2018-11-01


Citation Information: Open Astronomy, Volume 27, Issue 1, Pages 264–277, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2018-0029.

Export Citation

© by Dmitry Pritykin, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. Efimov, D. Pritykin, and V. Sidorenko
Celestial Mechanics and Dynamical Astronomy, 2018, Volume 130, Number 10

Comments (0)

Please log in or register to comment.
Log in