Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz

IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
See all formats and pricing
More options …
Volume 27, Issue 1


Large scale hydrodynamic modes of oscillations in gaseous disks of flat galaxies with a kink on rotation curves

Yury Torgashin
  • Corresponding author
  • Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya Str. 119017 Moscow, Russia; National Research Centre ”Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow, 123182, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Turgunbek Omurkanov
  • Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya Str. 119017 Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-30 | DOI: https://doi.org/10.1515/astro-2018-0031


The properties of unstable large-scale hydrodynamic (HD) modes of oscillations in the gaseous disk of a flat galaxy with a rotation curve having a velocity jump in the inner region of the disk are numerically investigated. It is shown that some of these modes can form a regular pseudo-ring, and others can generate a spiral structure in a model galactic disk, with the rotation curve that can approximate the observed rotation curves in nearby massive spiral galaxies (such as M31, M81). The characteristic time of formation of the regular structure turns out to be . (1 − 2) GY, the corotation is located in the region of the velocity jump (on the radius∼ 2 − 4 kpc). The properties of the generated densitywaves are determined by the parameters of the velocity jumpon the rotation curve (relative amplitude and steepness of the velocity profile decrease), as well as the temperature (velocity dispersion) of the gas in the disk. For the first time, it was investigated how the global HD modes and the spiral structures formed by them will change in the case of the presence of a jump in the profile of the equilibrium surface density. This model profile was set in the form of a slightly smeared falling density step. Main results were obtained for two-arm m = 2 azimuthal harmonic.

Keywords: galaxies; spiral structure - galaxies; kinematics and dynamics; hydrodynamic modes


  • Arakcheev, A.S. & Torgashin, Yu.M. 2012, In: Problems of Basic and Applied Natural and Engineering Sciences in the Modern Informational Society (Moscow Institute of Physics and Technology, Moscow), 78-79 (in Russian).Google Scholar

  • Athanassoula, E. 1992, MNRAS, 259, 345-364.Google Scholar

  • Bertin, G. 2014, Dynamics of Galaxies, Cambridge University Press, Cambridge.Google Scholar

  • Binney, J., Tremaine, S. 2008, Galactic Dynamics, Second Edition, Princeton University Press, Princeton.Google Scholar

  • Bournaud, F., Combes, F., & Semelin, B. 2005, MNRAS, 364, L18- L22.Google Scholar

  • Chemin, L., Carignan, C., & Foster, T. 2009, ApJ, 705, 1395-1415.Google Scholar

  • Combes, F. 2007, In: Combes F., Palous J. (Eds.), Proceedings of the IAUS 235, Cambridge University Press, Cambridge, 19-23.Google Scholar

  • Einasto, J. & Haud, U. 1989, A&A, 223, 89-94.Google Scholar

  • Freeman, K.C. 2009, Proceedings of the Astronomical Society of the Pacific conference, ASP, San Francisco, 3-11.Google Scholar

  • Fridman, A.M. 1990, Sov. Phys. JETP, 71, 627-635.Google Scholar

  • Fridman, A.M., Polyachenko, E.V., Torgashin, Yu.M., Yanchenko, S.G.,& Snezhkin, E.N. 2006, Physics Letters A, 349, 198-211.Google Scholar

  • Fridman, A.M. & Polyachenko, V.L. 1984, Physics of gravitating systems, I. Equilibrium and stability, Springer Verlag, New York- Berlin-Heidelberg-Tokyo.Google Scholar

  • Fridman, A.M., Snezhkina, E.N., Chernikov, G.P., Rylov, A.Yu., Titishova, K.B., & Torgashin, Yu.M. 2008, Physics Letters A, 372, 4822-4826.Google Scholar

  • Goldreich, P., Lynden-Bell, D. 1965, MNRAS, 130, 97-124.Google Scholar

  • Haan, S. et al. 2009, AAS, 41, 747.Google Scholar

  • Helfer, T.T., Thornley, M. D., Regan, M. W., Wong, T., Sheth, K., Vogel, S. N. et al. 2003, ApJS, 145, 2, 259-327.Google Scholar

  • Holmberg, J., Nordström, B., Andersen, J. 2007, A&A, 475, 519-537.Google Scholar

  • Kolykhalov, P.I. 1984, Instability of a shear discontinuity in a gas moving near a wall, In: Fluid Dynamics (Historical Archive), 19, 465-469.CrossrefGoogle Scholar

  • Kondratyev, B.P. 2014, MNRAS, 442, 1755-1766.Google Scholar

  • Kormendy, J. 2013, In: Falcon-Barroso J., Knapen J.H. (Eds.), Secular evolution of galaxies, Cambridge University Press, Cambridge, 1-159.Google Scholar

  • Kormendy, J. & Kennicutt, R.C., Jr. 2004, ARA&A, 42, 603-683.Google Scholar

  • Lin, C.C. & Shu, F.H. 1964, ApJ, 140, 646-655.Google Scholar

  • Lin, C.C. & Shu, F.H. 1966, PNAS, 55, 229-234.Google Scholar

  • Morozov, A.G. 1977, Soviet Astronomy Letters, 3, 103-105.Google Scholar

  • Morozov, A.G. 1979, Soviet Astronomy, 23, 278-281.Google Scholar

  • Morozov, A.G., Nezlin, M.V., Snezhkin, E.N., Torgashin, Yu.M., & Fridman, A.M. 1985, Astron. Tsirk. (in Russian), 1414, 4-7.Google Scholar

  • Morozov, A.G., Nezlin, M.V., Snezhkin, E.N., Torgashin, Yu.M., & Fridman, A.M. 1985, Astron. Tsirk., 1414, 7-8 (in Russian).Google Scholar

  • Polyachenko, E.V. 2004, MNRAS, 348, 345-354.Google Scholar

  • Safronov, V.S. 1960, AnAp, 23, 979-982.Google Scholar

  • Salo, H., Rautiainen, P., Buta, R., Purcell, G. B., Cobb, M. L., Crocker, D. A. et al. 1999, AJ, 117, 792-810.Google Scholar

  • Sofue, Y. & Rubin, V. 2001, ARA&A, 39, 137-174.Google Scholar

  • Sellwood, J.A. 2011, MNRAS, 410, 1637-1646.Google Scholar

  • Tenjes, P., Haud, U., Einasto, J. 1998, A&A, 335, 449-462.Google Scholar

  • Toomre, A. 1964, ApJ, 139, 1217-1238.Google Scholar

  • Toomre, A. 1981, In: Fall S.M., Lynden-Bell D. (Eds.), Proceedings of the Advanced Study Institute, Cambridge University Press, Cambridge & New York , 111-136.Google Scholar

  • Torgashin, Yu.M. 1986, The collective processes in gaseous galactic and accretion disks, Ph.D. thesis, Tartu.Google Scholar

  • Torgashin, Yu.M. & Omurkanov, T.Z. 2013, AN, 334, 870.Google Scholar

  • van der Kruit, P.C., & Freeman, K.C. 2011, ARA&A, 49, 301-371.Google Scholar

  • Weinzirl, T., Jogee, S., Khochfar, S., Burkert, A., & Kormendy, J. 2009, ApJ, 696, 411-447.Google Scholar

  • Zasov, A.V., Khoperskov, A.V., & Saburova, A.S. 2011, Astron Letters (in Russian), 37, 374-384.Google Scholar

  • Zasov, A.V. & Sil’chenko, O.K. 2010, Uspekhi Fizicheskih Nauk (inGoogle Scholar

  • Russian), 180, 434-439.Google Scholar

About the article

Received: 2017-11-20

Accepted: 2018-06-01

Published Online: 2018-10-30

Published in Print: 2018-09-01

Citation Information: Open Astronomy, Volume 27, Issue 1, Pages 278–289, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2018-0031.

Export Citation

© by Yury Torgashin and Turgunbek Omurkanov, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in