Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz

IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
See all formats and pricing
More options …
Volume 27, Issue 1


Model of the Galaxy with Hot Dark Matter

Dmitri L. Khokhlov
Published Online: 2018-12-13 | DOI: https://doi.org/10.1515/astro-2018-0034


The model of the galaxy is considered as a structure of the baryonic matter embedded into the hot dark matter. The dark matter is supposed to come into being from the decaying matter after the epoch of structure formation. The galaxy is divided into two regions. In the inner region, the baryonic matter predominates over the hot dark matter while in the outer region, the hot dark matter predominates over the baryonic matter. The motion of the test particle is bounded in the inner region (elliptic orbit) and unbounded in the outer region (parabolic orbit). Observational constraints on the proposed model are considered from the rotation curves of the galaxies: Milky Way, M33, NGC 2366 and IC 2574.

Keywords: galaxies: kinematics and dynamics; galaxies: structure; dark matter


  • Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi C. et al. 2016, A&A, 594, A13.Google Scholar

  • Barbieri, J., Chapline, G. 2012, Phys. Lett. B, 709, 114-117.Google Scholar

  • Battaner, E., Florido, E. 2000, Fund. Cosmic Phys., 21, 1-154.Google Scholar

  • Beers, T. C., Carollo, D., Ivezić, Ž., An, D., Chiba, M., Norris, J. E. et al. 2012, ApJ, 746, 34.Google Scholar

  • Bertone, G. 2010, Nature, 468, 389-393.Google Scholar

  • Bhatti, M. Z., Sharif, M., Yousaf, Z., Ilyas, M. 2018, Int. J. Mod. Phys. D, 27, 1850044.Google Scholar

  • Bland-Hawthorn, J., Gerhard, O. 2016, Annu. Rev. Astron. Astrophys., 54, 529-596.CrossrefGoogle Scholar

  • Carollo, D., Beers, T. C., Lee, Y. S., Chiba, M., Norris, J. E., Wilhelm, R. et al. 2007, Nature, 450, 1020-1025.Google Scholar

  • Carollo, D., Beers, T. C., Chiba, M., Norris, J. E., Freeman, K. C., Lee, Y. S. 2010, ApJ, 712, 692-727.Google Scholar

  • Chapline, G. 2003, Int. J. Mod. Phys. A, 18, 3587-3590.CrossrefGoogle Scholar

  • Chapman, S. C., Widrow, L., Collins, M. L. M., Dubinski, J., Ibata, R. A., Rich, M. et al. 2013, MNRAS, 430, 37-49.PubMedGoogle Scholar

  • Ciardullo, R., Durrell, P. R., Laychak, M. B., Herrmann, K. A., Moody, K., Jacoby, G. H., Feldmeier, J. J. 2004, ApJ, 614, 167-185.Google Scholar

  • Corbelli, E. 2003, MNRAS, 342, 199-207.Google Scholar

  • Corbelli, E., Thilker, D., Zibetti, S., Giovanardi, C., Salucci, P. 2014, A&A, 572, A23.Google Scholar

  • Deason, A. J., Belokurov, V., Evans, N. W. 2011, MNRAS, 416, 2903-2915.Google Scholar

  • Deason, A. J., Van der Marel, R. P., Guhathakurta, P., Sohn, S. T., Brown, T. M. 2013, ApJ, 766, 24.Google Scholar

  • Demiański, M., Doroshkevich, A. 2017, arXiv:1701.03474.Google Scholar

  • Famaey, B., McGuagh, S. 2012, Living Rev. Relativ., 15, 10.Google Scholar

  • Genzel, R., Schreiber, N. M. Förster, Übler, H., Lang, P., Naab, T., Bender, R. et al. 2017, Nature, 543, 397-401.Google Scholar

  • Georgi, H., Glashow, S. 1974, Phys. Rev. Lett., 32, 438-441.CrossrefGoogle Scholar

  • Hunter, D. A., Elmegreen, B. G., van Woerden, H. 2001, ApJ, 556, 773-800.PubMedGoogle Scholar

  • Kafle, P. R., Sharma, S., Lewis, G. F., Bland-Hawthorn, J. 2012, ApJ, 761, 98.Google Scholar

  • Kafle, P. R., Sharma, S., Lewis, G. F., Bland-Hawthorn, J. 2014, ApJ, 794, 59.Google Scholar

  • Kam, S. Z., Carignan, C., Chemin, L., Foster, T., Elson, E., Jarrett, T. H. 2017, AJ, 154, 41.Google Scholar

  • Khokhlov, D. L. 2011a, Ap&SS, 333, 209-212.Google Scholar

  • Khokhlov, D. L. 2011b, Ap&SS, 335, 577-580.Google Scholar

  • Khokhlov, D. L. 2011c, Open Astron. J., 4 SI 1, 151-153.Google Scholar

  • Khokhlov, D. L. 2013, Ap&SS, 343, 787-790.Google Scholar

  • Khokhlov, D. L. 2014, Phys. Lett. B, 729, 1-2.Google Scholar

  • Khokhlov, D. L. 2015, Ap&SS, 360, 27.Google Scholar

  • Khokhlov, D. L. 2017, Int. J. Mod. Phys. Appl., 4, 8-11.Google Scholar

  • King III, C., Brown, W. R., Geller, M. J., Kenyon, S. J. 2015, ApJ, 813, 89.Google Scholar

  • Kroupa, P. 2012, PASA, 29, 395-433.Google Scholar

  • Kroupa, P. 2015, Can. J. Phys., 93, 169-202.Google Scholar

  • Landau, L., and Lifshitz, Ye. 1960, Mechanics, Pergamon Press, Oxford.Google Scholar

  • Lang, P., Förster Schreiber, N. M., Genzel, R., Wuyts, S., Wisnioski, E., Beifiori, A. et al. 2017, ApJ, 840, 92.Google Scholar

  • López-Corredoira, M. 2017, Found. Phys., 47, 711-768.Google Scholar

  • Martimbeau, N., Carignan, C., Roy, J.-R. 1994, AJ, 107, 543-554.Google Scholar

  • Mazur, P., Mottola, E. 2004, Proc. Nat. Acad. Sci., 101, 9545-9550.Google Scholar

  • McMillan, P. J. 2017, MNRAS, 465, 76-94.Google Scholar

  • Nesti, F., Salucci, P. J. 2013, J. Cosm. Astropart. Phys., 07, 016.Google Scholar

  • Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F., Kennicutt, R. C., Jr. 2011, AJ, 141, 193.Google Scholar

  • Ostriker, J. P., Steinhardt, P. J. 1995, Nature, 377, 600-602.Google Scholar

  • Peebles, P. J. E. 1980, The large-scale structure of the universe, Princeton University Press, Princeton.Google Scholar

  • Prantzos, N., Boehm, C., Bykov, A. M., Diehl, R., Ferrière, K., Guessoum, N. et al. 2011, Rev. Mod. Phys., 83, 1001-1056.CrossrefGoogle Scholar

  • Read, J. I. 2014, J. Phys. G: Nucl. Part. Phys., 41, 063101.Google Scholar

  • Reyes, R., Mandelbaum, R., Seljak, U., Baldauf, T., Gunn, J. E., Lombriser, L., Smith, R. E. 2010, Nature, 464, 256-258.Google Scholar

  • Stabile, A., Capozziello, S. 2014, Galaxies, 2, 520-576.Google Scholar

  • Sesar, B., Jurić, M., Ivezić, Ž. 2011, ApJ, 731, 4.Google Scholar

  • Sesar, B., Ivezić, Ž., Stuart, J. S., Morgan, D. M., Becker, A. C., Sharma, S. et al. 2013, AJ, 146, 21.Google Scholar

  • Sofue, Y., Honma, M., Omodaka, T. 2009, PASJ, 61, 227-236.Google Scholar

  • Trimble, V. 1987, Ann. Rev. Astron. Astrophys., 25, 425-472.CrossrefGoogle Scholar

  • van Eymeren, J., Trachternach, C., Koribalski, B. S., Dettmar, R.-J. 2009, A&A, 505, 1-20.Google Scholar

  • Watkins, L. L., Evans, N. W., Belokurov, V., Smith, M. C., Hewett, P. C., Bramich, D. M. et al. 2009, MNRAS, 398, 1757-1770.Google Scholar

  • Weber, M., de Boer, W. 2010, A&A, 509, 25.Google Scholar

  • Weinberg, D. H., Bullock, J. S., Governato, F., de Naray, R. K., Peter, A. H. G. 2015, Proc. Nat. Acad. Sci., 112, 12249-12255.Google Scholar

  • Xue, X.-X., Rix, H.-W., Ma, Z., Morrison, H., Bovy, J., Sesar, B., Janesh, W. 2015, ApJ, 809, 144.Google Scholar

About the article

Received: 2017-10-10

Accepted: 2018-07-26

Published Online: 2018-12-13

Published in Print: 2018-12-01

Citation Information: Open Astronomy, Volume 27, Issue 1, Pages 294–302, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2018-0034.

Export Citation

© by Dmitri L. Khokhlov, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in