Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz

IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
See all formats and pricing
More options …
Volume 27, Issue 1


Organic Molecules in the Icy Bodies of Planetary Systems – Accepted Notions and New Ideas

Irakli Simonia
  • Corresponding author
  • School of Natural Sciences and Engineering of Ilia State University, Cholokashvili str., 3/5, Tbilisi0162, Georgia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dale P. Cruikshank
  • Astrophysics Branch, NASA Ames Research Center, Moffett Field, CA94035, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/astro-2018-0038


Cometary bodies are acknowledged to contain some of the most pristine matter in the Solar System, including ices and minerals. Certain number of previously unidentified spectral emission features detected in comets can be explained as emission by hydrocarbon molecules enclosed in a Shpolskii matrix and forming frozen hydrocarbon particles. UV-induced photoluminescence spectra of several self-organized molecules exhibit emission lines coincident with unidentified cometary lines, and open the possibility of the presence of this complex organic as components of the pristine organic inventory of comets. Complex organic was detected also in three satellites of Saturn. We describe in this paper results of our investigation of complex organic of the small bodies and present new approaches and hypotheses.

Keywords: comets; planets; ice; organic matter; prebiotic evolution


  • Alexander, C. M. O’D., Cody, G. D., Fogel, M., and Yabuta, H. 2008, In: Kwok S., Sandford S.A. (Eds), In Organic Matter in Space, IAU Symp., 251, 293-298.Google Scholar

  • Altwegg, K., Balsigner, H., Bar-Nun, A., Berthelier, J.-J., Bieler, A., et al. 2016, Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv., 2, e-1600285.Google Scholar

  • Avarmaa, R.A. and Rebane, K.K. 1988, Soviet Phyisics Uspekhi, 31(3), 225-240.Google Scholar

  • Bauschlicher, Jr., C.W., Peeters, E., and Allamandola, L.J. 2008, Astrophys. J., 678, 316-327.Google Scholar

  • Bauschlicher, Jr., C.W., Peeters, E., and Allamandola, L.J. 2009, ApJ., 697, 311-327.Google Scholar

  • Briani, G., Engrand, C., Benoit, R., Briois, C., Thirkell, L., Fischer, H. et al. 2012, M&PSA, id. 5362.Google Scholar

  • Brown, M.E., Boucher A.H., Spinrad H., and Jons-Krull E.M. 1996, AJ., 112, 1197-1225.Google Scholar

  • Capaccioni, F., Coradini, A., Filacchione, G., Erard, S., Arnold, G., Drossart, P. et al. 2015, Science, 347(6220), aaa0628.Google Scholar

  • Churyumov, K.I. and Kleshchenok, V.V. 1999, AAS DPS meeting 31, id 17.3.Google Scholar

  • Churyumov, K. I., Ponomarenko, V. A., Kleshchonok, V. V., and Baranski, A. R. 2013, Astron. Circular, 1603,1-4.Google Scholar

  • Clairemidi, J., Brechignac, P., Moreels, G., and Pautet D. 2004, P&SS, 57, 761-772.Google Scholar

  • Cochran, A.L. and Cochran, W.D. 2002, Icarus, 157, 297-308.Google Scholar

  • Cochran, A., Barker, E.S., and Cochran, W. 1980, Astron. J., 85, 474-477.Google Scholar

  • Coll, P., Coscia, D., Smith, N., Gazeau, M.-C., Ramírez, S. I., Cernogora, G. et al. 1999, P&SS, 47, 1331-1340.Google Scholar

  • Cremonese, G., Capria, M.T., and De Sanctis, M.C. 2007, A&A, 461, 789-792.Google Scholar

  • Crovisier, J. and Bockelee-Morvan, D. 2007, In: Lemaire J.L., Combes F. (Eds), Meeting on Molecules in Space and Laboratory (14-18 May 2007, Paris, France), id19.Google Scholar

  • Cruikshank, D. P., Roush, T. L., Owen, T. C., Geballe, T. R., de Bergh, C., Schmitt, B. et al. 1993, Science, 261, 742-745.Google Scholar

  • Cruikshank, D. P., Imanaka, H., and Dalle Ore, C. M. 2005, Adv. Space Res., 36, 178-183.Google Scholar

  • Cruikshank, D. P., Pendleton, Y. J., and Dalton, J. B. 2011, Does Hyperion carry an interstellar heritage of organics and ice? EPSC and DPS joint meeting (02-07 October 2011, Nants, France), 309-310.Google Scholar

  • Cruikshank, D. P., Wegryn, E., Dalle Ore, C. M., Brown, R. H., Baines, K. H., Bibring, J.-P. et al. 2008, Icarus, 193, 334-343.Google Scholar

  • Cruikshank, D. P., Dalle Ore, C. M., Clark, R. N., and Pendleton, Y. J. 2014, Icarus, 233, 306-315.Google Scholar

  • Dalle Ore, C. M., Cruikshank, D. P., and Clark, R. N. 2012, Icarus, 221, 735-743.Google Scholar

  • Dalton, J. B., Cruikshank, D. P., and Clark, R. N. 2012, Icarus, 220, 752-776.Google Scholar

  • Dartois, E., Marco, O., Muñoz-Caro, G.M., Brooks, K., Deboffle, D., d’Hendecourt, L. 2004, A&A, 423, 549-558.Google Scholar

  • Davis, A. M. 2011, Proc. Nat. Acad. Sci., 108, 19142-19146.Google Scholar

  • Dello Russo, N. Vervack, Jr R. J., Weaver, H. A., Lisse, C. M., Kawakita, H., Kobayashi, H. et al. 2013, Icarus, 222, 707-722.Google Scholar

  • Ehrenfreund, P. and Charnley, S. B. 2000, Ann. Review Astron. Astrophys., 38, 427-483.Google Scholar

  • Erokhina, L. G., Shatilovich, A. V., Kaminskaya, O. P., and Gilichinskii, D.A. 2002, Microbiology, 71(5), 601-607.Google Scholar

  • Fomenkova, M. L. 1999, Space Sci. Rev, 90, 109-114.Google Scholar

  • Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., and Jacobsen, C. 2003, Geochim. Cosmochim. Acta, 67, 4791-4806.Google Scholar

  • Goesmann, F., Rosenbauer, H., Bredehoft, J. H., Cabane, M., Ehrenfreund, P., Gautier, T. et al. 2015, Science 349(6247), aab0689.Google Scholar

  • Gudipati, M. S., Dworkin, J. P., Chillier, X. D. F., and Allamandola, L. J. 2003, ApJ, 583, 514-523.Google Scholar

  • Gudipati, M. S., Mrad, N. A., Blum, J., Charnley, S.B., Chiavassa, T., Cordinier, M. A., et al. 2015, Space Sci. Rev., 197(1-4), 101-150.Google Scholar

  • Handbook of Porphyrin Science. 2010, Vol.1K. M. Kadish, K. M. Smith & R. Guilard (,Eds), World Scientific Publishing.Google Scholar

  • Hartman, W.K., Cruikshank, D.P., and Tholen, D.J., 1987, Comets and Dark Asteroids: an Update, LPI Sci. Conf., 18, 392-393.Google Scholar

  • Imanaka, H., Khare, B. N., Elsila, J. E., Bakes, E. L. O., McKay, C. P., Cruikshank, D. P., et al. 2004, Icarus, 168, 344-366.Google Scholar

  • Jenniskens, P., deGroot, M., and Greenberg, J, M. 1991, LPI Contr. 765, 103.Google Scholar

  • Johnson, T. V. and Lunine, J. I. 2005, Nature, 436, 69-71.Google Scholar

  • Jovanić, B. R. and Dramićanin M. D. 2003, Luminescence, 18, 274-277.PubMedCrossrefGoogle Scholar

  • Kargel, J. S. 2007, LPI Contr. 1357, 72-73.Google Scholar

  • Kawakita, H. and Watanabe, J. 2002, ApJ, 574(2), L183-L185.Google Scholar

  • Khare, B. N., Sagan, C., Arakawa, E. T., Suits, F., Callcott, T. A., Williams, M. W. 1984, Icarus, 60, 127-137.CrossrefGoogle Scholar

  • Kobayashi, H. and Kawakita, H. 2009, ApJ, 703, 121-130.PubMedGoogle Scholar

  • Kress, M. E., Tielens, A. G. G. M., and Frenklach, M. 2010, Adv. Space Res., 46, 44-49.Google Scholar

  • Lawler, M. E. and Brownlee, D. E. 1992, Nature, 359, 810-812.Google Scholar

  • Le Roy, L., Altwegg, K., Balsiger, H., Berthelier, J.-J., Bieler, A., et al. 2015, A&A, 583, A1.Google Scholar

  • Li, A. 2009, In: Käufl, H.U., Sterken, Ch. (Eds.), Proceedings of the ESO/VUB Conference Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength (7-10 August 2006, Brussel, Belgium), Berlin, Springer, 161-175.Google Scholar

  • Materese, C. K., Cruikshank, D. P., Sandford, S. A., Imanaka, H., Nuevo, M., White, D. 2014, ApJ, 788, 111-121.Google Scholar

  • Materese, C. K., Cruikshank, D., P., Sandford, S. A.,Imanaka, H., Nuevo, M. 2015, ApJ, 182 (2), 150-158.Google Scholar

  • McDonald, G. D., Whited, L. J., DeRuiter, C., Khare, B. N., Patnaik, A., Sagan, S. 1996, Icarus, 122, 107-117.CrossrefGoogle Scholar

  • Nakhimovsky, L.A., Lamotte, M., Joussot-Dubien, J. 1989, Handbook of Low Temperature Electronic Spectra of Polycyclic Aromatic Hydrocarbons. Amsterdam, Elsevier.Google Scholar

  • Oró, J., Lazcano, A., Ehrenfreund, P. 2006, Comets and the origin and evolution of life. In: Thomas, P. J., Hicks, R. D., Chyba, C. F., McKay, C. P. (Eds.), 2nd ed., Springer, 1-27.Google Scholar

  • Osad’ko, I. S. 1979, Uspekhi Fizicheskikh Nauk, 128(1), 31 -67.Google Scholar

  • Owen, T. C., Cruikshank, D. P., Roush, T., deBergh, C., Brown, R. H., Bartholomew, M. J., et al. 1993, Science, 261, 745-748.Google Scholar

  • Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., and Sellgren, K. 1994, ApJ, 437, 683-696.Google Scholar

  • Pendleton, Y. J. and Allamandola, L. J. 2002, ApJ Suppl, 138, 75-98.Google Scholar

  • Pendleton, Y.J., Cruikshank, D.P., and Dalton, J.B., 2011, EPSC and DPS joint meeting (October 2-7, Nants, France), 309-310.Google Scholar

  • Pendleton, Y. J. and Cruikshank, D. P. 2014, Interstellar organics, the solar nebula, and Saturn’s satellite Phoebe (American Astron. Soc. meeting 223), Abstract 454.10.Google Scholar

  • Personov, R. I., Al’shitz, E. I., Bykovskaya, L. A., and Kharlamov, B. M. 1974, Sov.Phys.- JETP, 38, 912-917.Google Scholar

  • Pizzarello, S., Cooper, G. W., Flynn, G. J. 2006, The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In: Lauretta, D. S., McSween, Jr., H. Y. (Eds), Meteorites and the Early Solar System II, Univ. Arizona Press, 625-651.Google Scholar

  • Pizzarello, S., and Shock, E. 2010, The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry, Cold Springs Harbor Perspectives in Biology, 2(3), 2105 - 2111.Google Scholar

  • Platenkamp, R.J. and Canters, G. W. 1981, J. Phys. Chem., 85, 56-63.CrossrefGoogle Scholar

  • Quirico, E., Moroz, L. V., Schmitt, B., Arnold, G., Faure, M., Beck, P. et al. 2016, Icarus, 272, 32-47.Google Scholar

  • Ricca, A., Bauschlicher Jr., C. W., Boersma, C., Tielens, A. G. G. M., and Allamandola, L. J. 2012, ApJ, 754, 75-96.Google Scholar

  • Scipioni, F., Tosi, F., Stephan, K., Filacchione, G., Filacchione, G., Ciarniello, M., Capaccioni, F. et al. 2014, Icarus, 234, 1-6.Google Scholar

  • Shimomura, O. 2006, Bioluminescence: chemical principles and method, New Jersey:World Scientific Publishing.Google Scholar

  • Shpolskii, E. 1959, Soviet Physics Uspekhi, 2(3), 378-392.Google Scholar

  • Shpolskii, E. 1960, Uspehki Fizicheskikh Nauk, 71(2), 215-242.Google Scholar

  • Shpolskii, E. 1962, Uspekhi Fizicheskikh Nauk, 77(2), 321-336.Google Scholar

  • Simonia, I.A. 2004, Astron. Lett., 30, 863-868.Google Scholar

  • Simonia, I.A. 2007, ApSS, 312, 27-33.Google Scholar

  • Simonia, I. 2011a, ApSS, 332(1), 91-98.Google Scholar

  • Simonia, I. 2011b, AJ, 141, 56-61.Google Scholar

  • Simonia, I. 2013, Organic molecules of cometary substance. First International Conference on Chemical Evolution of Star FormingGoogle Scholar

  • Regions and Origin of Life. Astrochem2012, AIP proceedings, 1543, 99-114.Google Scholar

  • Simonia, I. and Simonia, Ts. 2013, Relict substance of comets, European Planetary Science Congress (08-13 September 2013, University College London, UK), 8, 108-1.Google Scholar

  • Simonia, I. and Simonia, Ts. 2014, Complex organic and Possible Prebiotics in the Cometary Matter. International Cometary Workshop (1-3 April 2014, Toulouse, France), Available online http://videotheque.univ-tlse3.fr/media/20140402-comet_irakliflvGoogle Scholar

  • Simonia, I. 2016, AJ, 152, 87 (8pp).Google Scholar

  • Sung-Won H., Je-Hee H., Chae-Kyung S., et al. 2009, J. Astron. Space Sci. 26(4), 487-498.Google Scholar

  • Tamayo, D., Burns, J.A., Hamilton, D.P., and Hedman, M.M. 2011, Icarus, 215, 260-278.Google Scholar

  • Tosi, F., Turrini, D., Coradini, A., and Filacchione, G. 2010, MNRAS, 403 (3), 1113-1130.Google Scholar

  • Ugarova, N. N. and Brovko, L. Y. 2002, Luminescence, 17, 321-330.CrossrefPubMedGoogle Scholar

  • Viviani, V. R., Arnoldi, F.G.C., Ogawa, F.T., and Brochetto-Braga, M. 2007, Luminescence, 22, 362-369.PubMedCrossrefGoogle Scholar

  • Verbiscer, A.J., Skrutskie, M.F., and Hamilton, D.P. 2009, Nature, 461, 1098-1100.Google Scholar

  • Waite, J. H., Lunine, J. I., McKinnon, W. B., Glein, C., Mousis, O., Lewis, W. S. et al. 2009, AGUSM, id. P32A-02.Google Scholar

  • Wopenka, B., Xu, Y. C., Zinner, E., and Amari, S. 2013, GeoCoA, 106, 463-489.Google Scholar

  • Wyckoff, S. and Heyd, R. S., Fox, R. 1999, ApJ, 512, L73-L76.Google Scholar

About the article

Received: 2018-02-26

Accepted: 2018-06-01

Published Online: 2018-12-31

Published in Print: 2018-12-01

Citation Information: Open Astronomy, Volume 27, Issue 1, Pages 341–355, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2018-0038.

Export Citation

© by Irakli Simonia, Dale P. Cruikshank, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in