Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz


IMPACT FACTOR 2017 (Baltic Astronomy): 0.417
5-year IMPACT FACTOR (Baltic Astronomy): 0.486

CiteScore 2017: 0.16

SCImago Journal Rank (SJR) 2017: 0.131
Source Normalized Impact per Paper (SNIP) 2017: 0.109

ICV 2017: 121.03

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 28, Issue 1

Issues

Mineralized biosignatures in ALH-77005 Shergottite - Clues to Martian Life?

Ildikó Gyollai
  • Corresponding author
  • Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Geobiomineralization and Astrobiology Working Group, HAS, H-1112 Budapest, Budaörsi u. 45, Hungary gyildi@gmail.com
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Márta Polgári
  • Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Geobiomineral- ization and Astrobiology Working Group, HAS, H-1112 Budapest, Budaórsi u. 45, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Szaniszló Bérczi
  • Eötvös University, Dept. of Materials Physics, Cosmic Materials Space Res. Group, H-1117 Budapest, Pázmány P. str. 1/a, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arnold Gucsik
  • Eszterházy Károly University, Dept. of Natural Geography and Geoinformatics, 3300 Eger, Leányka str. 6, Hungary; Wigner Research Centre for Physics, HAS, 1121 Budapest, Konkoly-Thege M. str. 29-33, Hungary; University of Johannesburg, Department of Geology, 2600 Auckland Park, Johannesburg, South Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elemér Pál-Molnár
Published Online: 2019-04-03 | DOI: https://doi.org/10.1515/astro-2019-0002

Abstract

The ALH-77005 Martian meteorite was found in Allan Hills on Antarctica during the Japanese National Institute of Polar Research (1977-1978) mission. One thin section sample was studied by optical microscopy for microtexture and by FTIR-ATR microscopy for interpretation of biogenic minerals and embedded organic materials. The geochemical data (biogenic elements, δ13C) of ALH-77005 meteorite from literature implementing recent results were compared to terrestrial geological samples. The ALH-77005 has poikilitic textures with coarse pyroxenes and brown olivines, and with recrystallized melt pocket. The coarse-grained minerals do not contain any alteration along the grain boundaries. Melt pocket and vicinity of opaque minerals contain biogenic signatures as filamentous, coccoidal forms of iron-oxidizing bacteria. The biosignatures were determined by 1) coccoidal, filamentous forms, 2) presence of embedded organic material, 3) presence of biogenic minerals, like ferrihydrite, goethite, and hematite. The other signatures for biogenicity of this meteorite are strong negative δ13C, enrichment of Fe, Mn, P, Zn in shock melt support scenario. This study proposes presence of microbial mediation on Mars.

Keywords: Martian meteorite; biogenic signatures; iron oxidizing bacteria (FeOB); ALH-77005; shergottite; FTIR-ATR; microbial mediation

References

  • Bishop, J. L. & Murad, E. 2004, J. of Raman Spect., 35 (6), 480-486.Google Scholar

  • Baele, J. M., Bouvain, F., De Jong, J., Matielli, N., Papier, S., & Préat, A. 2008, In Instruments, Methods, and Missions for Astrobiology XI, International Society for Optics and Photonics, 7097, 70970N.Google Scholar

  • Bérczi, S., 2017, In: Planetary Science Vision 2050 Workshop (27-28 February and 1 March, 2017 in Washington, DC, USA), 1989, id.8003.Google Scholar

  • Bérczi, S., 2018, Acta Geoscientia Debrecina Special Issue 1, 31-53 (in Hungarian, with the captions of the figures in English).Google Scholar

  • Bodor, S., Polgári M., Szentpétery, I., & Földessy, J. 2016, Ore Geol. Revs., 72, 391-401.Google Scholar

  • Cady, S.L., Farmer J.D., Grotzinger, J. P., Schopf, J. W., & Steele, A. 2003, Astrobiology, 3 (2), 351-369.CrossrefPubMedGoogle Scholar

  • Calvin, C. & Rutherford, M. J. 2005, 36th LPSC. #abs1895.Google Scholar

  • Dyar, M. D., Glotch, T. D., Lane, M. D., Wopenka, B., Tucker J. M., Seaman, SJ. et al. 2011, Polar Science, 4(4), 530-549.Google Scholar

  • Edmunson, J., Borg, L. E., Shearer, C. K. & Papike, J. J. 2002, 33rd LPSC. abs#1844.Google Scholar

  • Glotch, T. D. & Rossman, G. R., 2009, Icarus, 204(2), 663-671.Google Scholar

  • Gyollai, I, Polgári, M. , Bérczi, Sz. , Veres, M. , Gucsik A., & Pál-Molnár, E. 2017b, Workshop on Chondrules and Protoplanetary Disk, #1963.Google Scholar

  • Gyollai, I., Polgári, M., Fintor, K., Popp, F., Mader, D., Nagy, Sz. et al. 2015, J. Earth & Env. Sci., 10(1), 63-76.Google Scholar

  • Gyollai, I., Nagy, S., Bérczi, S. & Nishido, H. 2013, In: 4th Symp. Nat. Inst. Polar Sci. - Antarctic Meteorites ordinary session, 2.Google Scholar

  • Gyollai, I., Polgari, M., Fintor, K., Pál-Molnár, E., Popp, F., & Koeberl, C. 2017a, Austr. J. Earth Sci., 110(1), 2-18.Google Scholar

  • Gyollai, I., Polgári, M., Veres, M., Nagy, S., Popp, F., Mader, D. et al. 2014, Comm. Nam. Geol. Surv., 15, 117-133.Google Scholar

  • Hicks, L. J., Bridges, J. C., & Gurman, S. J. 2014, Geochim. Cosmochim. Acta, 136, 194-210.Google Scholar

  • Hoffmann, V. H., Funaki, M., Torii, M., Kurihara, T. & Mikouchi, T. 2008, 39th LPSC #1703.Google Scholar

  • Ikeda, Y. 1994, Proc. of NIPR Symp. of Ant. Met. Res. (31st of May- 2nd June 1993, Tokyo, Japan), 7, 929.Google Scholar

  • Lane, M. D., Glotch, T. D., Dyar, M. D., Pieters, C. M., Klima, R., Hiroi, T. et al. 2011, J. Geophys. Res.: Planets, 116(E8).Google Scholar

  • Madejova, J. & Komadel, P. 2001, Clays & Clay Miner., 49(5), 410-432.CrossrefGoogle Scholar

  • Matrajt, G., Caro, G. M., Dartois, E., d’Hendecourt, L., Deboffle, D. & Borg, J. 2005, 433(3), 979-995.Google Scholar

  • Mikouchi, T., Tsuchiyama, A., Akai, J., Nakashima, S., Tazaki, K., Itaya, T. et al. 1997, Miner. Journ., 19(2), 47-64.Google Scholar

  • Miura, Y. N., Nagao, K., Sugiura, N., Sagawa, H. & Matsubara, K. 1995, Geochim. Cosmochim. Acta, 59(10), 2105-2113.Google Scholar

  • Molnár, Z., Polgári, M., Hein, J.R., Józsa, S., Fekete, J., Gyollai, I., Fintor, K., Bíró, L., Szabó, M., Rapi, S, &. Forgó, P. 2017, Fe-Mn oxide indications in the feeder and mound zone of the Jurassic Mn-carbonate ore deposit, Úrkút, Hungary. Ore Geol. Revs., 86, 839-855.Google Scholar

  • Müller, A. 2009, Morphology and genesis of chalcedony and opal in S-Mátra Mts. Dél-mátrai kalcedon és opál mintázatok morfológiája és genetikája. Manuscript, 110. (in Hungarian).Google Scholar

  • Müller, CM., Pejcic, B., Esteban, L., Delle Piane, C., Raven, M., & Mizaikoff, B. 2014, Sci. Reps. 4, article no. 6764.Google Scholar

  • Nagy, Sz., Józsa, S., Gucsik, A., Bérczi, S., Ninagawa, K., Nishido, H. at al. 2012, Centr. Eur. Geol. 55(1), 33-48.Google Scholar

  • Nyquist, L. E., Bogard, D. D., Shih C.-Y., Greshake, A., Stöffler, D., & Eugster, O. 2001, Space Sci. Rev., 96, 105–164.Google Scholar

  • Orlov, A. S., Mashukov, V. I., Rakitin, A. R., & Novikova, E. S. 2012, J. Applied Spectr., 79(3), 484-489.Google Scholar

  • Parikh, S. J. & Chorover, J. 2006, 22(20), 8492-8500.Google Scholar

  • Polgári, M., Gyollai, I., Bérczi, Sz., Veres, M., Gucsik, A., & Pál-Molnár, E. 2017a, In: EANA17 European Astrobiology Association Exoplanets, Aarhus University press, 52-53.Google Scholar

  • Polgári, M., Gyollai, I., & Bérczi, Sz. 2017b, In: Nagy, M., McIntosh, R. (Eds.) Átfogó kutatások a kabai meteoriton, 32, 8 (in Hungarian).Google Scholar

  • Polgári, M., Gyollai, I., & Bérczi, Sz. 2019, Open Astron. (in press)Google Scholar

  • Polgári, M., Gyollai, I., Bérczi, Sz. 2018a, In: Nagy M., McIntosh R. (Eds.), Comprehensive Research on Kaba Meteorite, Acta GGM Debrecina Geology, Geomorphology, Physical Geography Series, Debrecen University Press, Special Issue, 55-69.Google Scholar

  • Polgári, M., Hein, J. R., Tóth, A. L., Pál-Molnár, E., Vigh, T., Bíró, L. et al. 2012a, Geology, 40(10), 903-906.Google Scholar

  • Polgári, M., Hein, J. R., Vigh, T., Szabó-Drubina, M., Fórizs, I., Bíró, L., et al. 2012b, Ore Geol. Revs, 47, 87-109.Google Scholar

  • Rajabzadeh, M. A., Haddad, F., Polgári, M., Fintor, K., Walter, H., Molnár, Z. et al. 2017, Ore Geol. Revs., 80, 229-249.Google Scholar

  • Rajasekar, A., Maruthamuthu, S., Muthukumar, N., Mohanan, S., Subramanian, P. & Palaniswamy, N. 2005, Corros. Sci., 47(1), 257-271.Google Scholar

  • Skinner, H.C.W., 2005, Biominerals, Miner. Mag., 69 (5), 621 – 641.Google Scholar

  • Takenouchi, A., Mikouchi, T., & Yamaguchi, A., 2018, Met. Planet. Sci doi: 10.1111/maps.13120é.Google Scholar

  • Wright, I. P., Grady, M. M., & Pillinger, C. T. 1988, Geochim. Cosmochim. Acta, 52(4), 917-924.Google Scholar

  • Wright, I. P., Grady, M. M., & Pillinger, C. T. 1992, Geochim. Cosmochim. Acta, 56(2), 817-826.Google Scholar

  • Yanai, K. 1979, Mem. NIPR Res. Spec. Is., 12, 1-8.Google Scholar

About the article

Received: 2018-03-19

Accepted: 2018-08-16

Published Online: 2019-04-03

Published in Print: 2019-01-01


Citation Information: Open Astronomy, Volume 28, Issue 1, Pages 32–39, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2019-0002.

Export Citation

© 2019 Ildikó Gyollai et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in