Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Agricultura Tropica et Subtropica

The Journal of Mendel University in Brno, Czech Republic

4 Issues per year

Open Access
Online
ISSN
1801-0571
See all formats and pricing
More options …

Estimation of Transient Drainage Discharge from Subsurface Pipe Drainage System in City Park Next to Mseno Dam (Czech Republic)

Jakub Stibinger
  • Corresponding author
  • Czech University of Life Sciences Prague Faculty of Environmental Sciences, Department of Land Use and Improvement, Kamycka 129, 165 21, Prague – 6, Czech Republic
  • Email:
Published Online: 2013-07-30 | DOI: https://doi.org/10.2478/ats-2013-0011

Abstract

The aim of this study has been to demonstrate the way of determination of drainage discharge by the method of De Zeeuw-Hellinga in the transient drainage flow conditions. For comparison and verification of numerical experiment of calculation of drainage discharge by equation of De Zeeuw-Hellinga with measured daily values of drainage discharge was selected subsurface pipe drainage system in experimental drained area, placed in the local city park next to the Mseno Dam, in the city of Jablonec nad Nisou, Czech Republic. The results showed a good conformity between calculations and measured data, the differences between De Zeeuw-Hellinga’s approximations and measured daily values of drainage discharge fluctuated from 0.6 (mm.day-1) to zero, and confirmed that the De Zeeuw-Hellinga’s formula is a suitable tool for approximation of the drainage discharge in the transient flow conditions. It was confirmed again that De Zeeuw-Hellinga theory is also applicable for the shallow subsurface pipe drainage system.

Keywords : transient drainage discharge; pipe drainage system; De Zeeuw-Hellinga theory; Mseno Dam

  • Alterra / ILRI Wageningen, Ritzema H. (2008): Materials from “International Course on Land Drainage”, module 3: “Design, Implementation and Operation of Drainage Systems” Pre drainage investigations for Mahstul Pilot Area (Nile Delta, Egypt) Wageningen, The Netherlands, pp. 43-58.Google Scholar

  • Boussinesq J. (1904): Recherches théoretiques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. Journal de mathématiques pures et appliquées, no.10, part 5: 5-78.Google Scholar

  • Dam J. C. van (2000): Field-scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Doctoral Thesis Wageningen University. Wageningen, The Netherlands. pp. 5-26.Google Scholar

  • De Zeeuw J. V., Hellinga F. (1958): Nerslaag en afvoer. Landbouwkundig Tijdschrift. 70: 405-422.Google Scholar

  • Dieleman P. J., Trafford B. D. (1976): Drainage testing. Irrigation and Drainage Paper 28: FAO. Rome, Italy. pp. 58-62.Google Scholar

  • Dumm L. D. (1964): Transient flow concepts in drainage: Its validity and use. Transaction of the American Society for Agricultural Engineering. 7(2): 142-146.Google Scholar

  • Fuentes C., Zavala M., Saucedo H. (2009): Relationship between the Storage Coeffotient and the Soil-Water Retention Curve in Subsurface Agricultural Drainage Systems: Water Table Drawdown. Journal of Irrigation and Drainage Engineering 135(3): 279-285.Web of ScienceGoogle Scholar

  • Glover R. E. (1964): Ground-water movement. U. S. Bureau of Reclamation Eng. Mon. 31, Colorado, Denver, USA., pp. 66-88.Google Scholar

  • Hooghoudt S. B. (1940): Bijdragen tot de kennis van enige natuurkundige rootheden van de grond. Deel 7. Versl. Landb. Onderzoek 46 (14), The Netherlands. B:515-B:707.Google Scholar

  • Krajenhof van de Leur D. A. (1958): A study of non-steady groundwater flow with a special reference to a reservoir coefficient. I. De Ingenieur, 70: B87-94.Google Scholar

  • Kulhavy Z. (2007): Optimalizace krajinné struktury z hlediska hydrologických režimů (In Czech). Periodická zpráva za r. 2007 z národního programu výzkumu II., projektu č. 2B06022 pro MŠMT ČR pp. 225-232.Google Scholar

  • Maasland M. (1959): Water table fluctuations induced by intermittent recharge. Journal of Geophysical Research 64: 549-559.Google Scholar

  • Mirlas V. (2009): Applying MODFLOW Model for Drainage Problem Solution: A Case Study from Jahir Irrigated Fields, Israel. Journal of Irrigation and Drainage Engineering 135 (3): 269-278.Web of ScienceGoogle Scholar

  • Mls J. (2002): Analytické řešení obyčejné diferenciální rovnice separací proměnných. (In Czech, unpublished materials, Universita Karlova v Praze, Přírodovědecká fakulta, Ústav hydrogeologie, inženýrské geologie a užité fyziky. Praha, ČR, pp. 20-30.Google Scholar

  • Ritzema H. P. (2006): Subsurface flows to drains. In: H. P. Ritzema (Ed.): Drainage Principles and Applications, ILRI Publ. 16, Wageningen, The Netherlands. pp. 283-294.Google Scholar

  • Simm O., Skořepa Z., Strnad J. (2001): Přehrada v klínu hor. Die Talsperre am Fuse der Berge. Vydavatel Ing. Zdeněk Skořepa - Agentura ZR. Jablonec nad Nisou, ČR, pp. 67-88.Google Scholar

  • Singh S.K. (2009): Generalized analytical Solutions for Groundwater Head in a horizontal Aquifer in the Presence of Subsurface Drains. Journal of Irrigation and Drainage Engineering 135(3): 295-302.Web of ScienceGoogle Scholar

  • Skaggs R. W. (1999): Drainage simulation models. In: R. W. Skaggs & J. Schilfgaarde van, Agricultural Drainage, pp. 469-500. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA.Google Scholar

  • Šolcová P. (2008): Posouzení hydraulické účinnosti systematické trubkové drenáže pod přehradou Mšeno (Jablonec nad Nisou). (In Czech). Diploma project, ČZU Praha, KBÚK, FZP Praha, ČR, pp. 82-88.Google Scholar

  • Stibinger J. (2006): Approximation of Landfill Drainage Discharge by De Zeeuw-Hellinga Model. Proceedings Waste Management 2006. The Waste Conference Limited, the Barclay Centre University of Warwick Science Park Coventry, CV4 7EZ, UK. pp. 721-730.Google Scholar

  • Stibinger J. (2009): Approximation of subsurface drainage discharge by De Zeeuw-Hellinga theory and its verification in heavy soils of fluvial landscape of the Cerhovice brook. Soil and Water Research 1. 4: 28-38.Google Scholar

  • Stibinger J. (2011): Hydraulic function of subsurface pipe drainage system on agricultural and drainage experimental field in Mashtul Pilot Area (Nile Delta, Egypt). Agricultura Tropica et Subtropica 44 (2): 323-328.Google Scholar

  • Stibinger J., Kulhavý Z. (2010): Úpravy vodního režimu půd odvodněním. (In Czech). ISBN 80-213-2132-8. ČZU Praha, FŽP, VÚMOP Praha-Zbraslav v. v. i., pp. 52-68.Google Scholar

  • Vodní díla - TBD (2012): Databáze vybraných měřených hydrologických dat - Přehrada Mšeno, Jablonec nad Nisou (In Czech, unpublished materials), Povodí Labe, ČR, pp. 25-35.Google Scholar

  • Zavala M., Fuentes C., Saucedo H. (2007): Non-linear radiation in the Boussinesq equation of the agricultural drainage. Journal of Hydrology 332: 374-380.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-07-30

Published in Print: 2013-06-01


Citation Information: Agricultura tropica et subtropica, ISSN (Online) 1801-0571, DOI: https://doi.org/10.2478/ats-2013-0011.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in