Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Cibiniensis. Series E: Food Technology

The Journal of „Lucian Blaga“ University of Sibiu

2 Issues per year

Open Access
See all formats and pricing
More options …


Tamás Antal
  • Corresponding author
  • Department of Vehicle and Agricultural Engineering, College of Nyíregyháza, Kótaji str. 9-11., Nyíregyháza, H-4400, HUNGARY
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ László Sikolya
  • Department of Transportation and Infotechnology, College of Nyíregyháza, Kótaji str. 9-11., Nyíregyháza, H-4400, HUNGARY
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benedek Kerekes
  • Department of Vehicle and Agricultural Engineering, College of Nyíregyháza, Kótaji str. 9-11., Nyíregyháza, H-4400, HUNGARY
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-31 | DOI: https://doi.org/10.2478/aucft-2013-0006


The effect of freezing rate on the quality of dried Jonagold and Idared was studied. Apple slices underwent various pre-treatments, i.e. freezing in household freezer (freezing rate: 0,5 °C/min), contact plate freezing (2 °C/min) and vacuum-freezing (3 °C/min). The quality of the freeze dried product was then evaluated in terms of water activity, hardness, color and rehydration. The freezing in household freezer (slow freezing rate) significantly reduces the duration of the freeze drying process and consequently the process costs. The slow freezing rate allows the growth of large ice crystals at the beginning of the freeze-drying process, this fact should consequently lead to larger pores and injured cell walls and thus to shorter freeze drying time. Quality of the freezing in household freezer product was assessed as higher than the quality of the other freezing pre-treated material. Slow freezing rate resulted softer texture and higher rehydration capacity, than that of other pre-treated samples. In all cases, slow freezing lead to lower final moisture content, total color difference and water activity.

Keywords: Apple; Freezing; Freeze drying; Drying time; Quality assessment

  • 1. Antal, T. (2013). A fagyasztás, mint előkezelés hatása a szublimációs szárítás működési idejére és a végtermék minőségére.(The effect of freezing as pre-treatment on operational time of sublimation drying and quality of final product) Élelmiszer Tudomány Technológia (Food Science Technology). 67(4).Google Scholar

  • 2. Araki, T., Sagara, Y., Abdullah, K. & Tambunan, A.H. (2001). Transport properties of cellular food materials undergoing freezedrying. Drying Technology. 19, 297-312.CrossrefGoogle Scholar

  • 3. Beaudry, C., Raghavan, G.S.V., Ratti, C. & Rennie, T.J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology. 22(3), 521-539.CrossrefGoogle Scholar

  • 4. Ceballos, A.M., Giraldo, G.I. & Orrego, C.E. (2012). Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. Journal of Food Engineering. 111, 360-365.Web of ScienceGoogle Scholar

  • 5. Doymaz, I. (2009). An experimental study on drying of green apples. Drying Technology. 27, 478-485.CrossrefGoogle Scholar

  • 6. Doymaz, I. (2010). Effect of citric acid and blanching pre- treatments on drying and rehydration of Amasya red apples. Food and Bioproducts Processing. 88, 124-132.\Web of ScienceGoogle Scholar

  • 7. Eshtiaghi, M.N., Stute, R. & Knorr, D. (1994). High-pressure and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes. Journal of Food Science. 59, 1168-1170.Google Scholar

  • 8. Feng, H. & Tang, J. (1998). Microwave finish drying of diced apples in a spouted bed. Journal of Food Science. 63, 679-683.Google Scholar

  • 9. Ghio, S., Barresi, A.A. & Rovero, G. (2000). A comparison of evaporate and conventional freezing prior to freeze-drying of fruits and vegetables. Institution of Chemical Engineering. 78, 187-192.Google Scholar

  • 10. Jackel, T., Dautel, K. & Ternes, W. (2008). Preserving functional properties of hen’s egg yolk during freeze-drying. Journal of Food Engineering. 87, 522-526.Google Scholar

  • 11. McLaughlin, C.P. & Magee, T.R.A. (1998). The determination of sorption isotherm and isosteric heats of sorption for potatoes. Journal of Food Engineering. 35, 267-280.CrossrefGoogle Scholar

  • 12. Nail, S. & Gatlin, L. (1993). Freeze drying: Principle and practice. In Avis, A., Liebermann, A. & Lachann, I. (Eds.), Pharmaceutical dosage forms, Vol. 2. (pp. 163-333). Marcel Dekker Inc., New York.Google Scholar

  • 13. Pikal, M.J. (2007). Freeze drying. In Swarbick, J. (Ed.), Encyclopedia of Pharmaceutical (pp. 1807-1832).Technology Informa Healthcare, New York.Google Scholar

  • 14. Reyes, A., Bubnovich, V., Bustos, R., Vásquez, M., Vega, R. & Scheuermann, E. (2010). Comparative study of different process conditions of freeze drying of ‘Murtilla’ berry. Drying Technology. 28, 1416-1425.Web of ScienceCrossrefGoogle Scholar

  • 15. Rovero, G., Ghio, S. & Barresi, A.A. (2001). Development of a prototype capacitive balance for freeze-drying studies. Chemical Engineering Science. 56(11), 3575-3584.CrossrefGoogle Scholar

  • 16. Tregunno, N.B. & Goff, H.D. (1996). Osmodehydrofreezing of apples: Structural and textural effects. Food Research International. 29, 471-479.CrossrefGoogle Scholar

  • 17. Wang, Y., Zhang, M., Mujumdar, A.S. & Mothibe, K.J. (2012). Experimental investigation and mechanism analysis on microwave freeze drying of stem lettuce cubes in a circular conduit. Drying Technology. 30, 1377-1386. CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-12-31

Published in Print: 2013-12-01

Citation Information: Acta Universitatis Cibiniensis. Series E: Food Technology, Volume 17, Issue 2, Pages 3–14, ISSN (Print) 2344-150X, DOI: https://doi.org/10.2478/aucft-2013-0006.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in