Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Cibiniensis. Series E: Food Technology

The Journal of „Lucian Blaga“ University of Sibiu

2 Issues per year

Open Access
Online
ISSN
2344-150X
See all formats and pricing
More options …

Kinetics of Batch Fermentation in the Cultivation of a Probiotic Strain Lactobacillus Delbrueckii Ssp. Bulgaricus B1

Bogdan Goranov
  • Department “Microbiology”, University of Food Technologies, 26 “Maritza” boulevard, Plovdiv, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vesela Shopska
  • Department “Technology of wine and brewing”, University of Food Technologies, 26 “Maritza” boulevard, Plovdiv, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rositsa Denkova
  • Department “Biochemistry and molecular biology”, University of Food Technologies, 26 “Maritza” boulevard, Plovdiv, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georgi Kostov
  • Corresponding author
  • Department “Technology of wine and brewing”, University of Food Technologies, 26 “Maritza” boulevard, Plovdiv, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-04 | DOI: https://doi.org/10.1515/aucft-2015-0006

Abstract

A comparative study of kinetic models to describe the dynamics of the fermentation process of culturing of a probiotic strain Lactobacillus delbrueckii ssp. bulgaricus B1 was performed. The models of Monod, Aiba, Tiessier, Hinshelwood and the equation of the logistic curve combined with the model of Ludeking-Piret were used. It has been found that the different models described the observed fermentation dynamics differently. The conducted comparative study demonstrated that the models of Monod and the equation of the logistic curve combined with the model of Ludeking-Piret were suitable for the description of the fermentation dynamics. The mathematical models showed no significant product and/or substrate inhibition. The culture developed with a low specific growth rate, but nevertheless it accumulated 1012-1013 viable cells. The substrate was absorbed primarily from cells in the stationary growth phase rather than cells in the exponential growth phase

Keywords: probiotics; fermentation; kinetic models

References

  • 1. Angelov M., Kostov G. (2011). Bioengineering aspects of fermentation processes with free and immobilized microbial cells. Agency 7Д.Google Scholar

  • 2. Barry V. M. & Murphy A. (2000). Measurement of total fructan in foods by enzymatic/spectrophotometric method: collaborative study. Journal of AOAC International, 83(2), 356-364.Google Scholar

  • 3. Birol G., Doruker P.; Kardar B., Onsan Z., Ulgen K. (1998). Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae, Process Biochemistry, 33, 763-771.Google Scholar

  • 4. D’Aimmo, M. R., Modesto M., & Biavati B. (2007). Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. Isolated from dairy and pharmaceutical products. International Journal of Food Microbiology, 115(1), 35-42.PubMedCrossrefGoogle Scholar

  • 5. FAO/WHO. (2001). Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. from ftp.fao.org/es/esn/food/probioreport_en.pdfGoogle Scholar

  • 6. Gilliland, S. E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology Letters, 87(1-2), 175-188.CrossrefGoogle Scholar

  • 7. Ivanov, T., Gerov S., Yankov A., Bambalov G., Tonchev T., Nachkov D., Marinov M. (1979). Practical course in wine technology, Hristo G. Danov, Plovdiv.Google Scholar

  • 8. Kostov G., Popova S., Gochev V., Koprinkova-Hristova P., Angelov M., Georgieva A. (2012). Modeling of batch alcohol fermentation with free and immobilized yeasts Saccharomyces cerevisiae 46 EVD. Biotechnology & Biotechnological Equipment, 26(3), 3021-3030, DOI: 10.5504/bbeq.2012.0025CrossrefWeb of ScienceGoogle Scholar

  • 9. Kostov G. (2015). Intensification of fermentation processes with immobilised biocatalysts. Thesis for Doctor of Sciences, University of Food Technologies, Plovdiv, Bulgaria.Google Scholar

  • 10. Lourens-Hattingh, A., & Viljoen B. C. (2001). Yogurt as probiotic carrier food. International Dairy Journal, 11(1-2), 1-17.CrossrefGoogle Scholar

  • 11. Macrae, R., Robinson R. K., Sadler M., Encyclopaedia of Food Science, Food Technology and Nutrition, Vol. 5, Academic Press, San Diego 1993, p. 3082.Google Scholar

  • 12. Madigan, M. T., Martinko J. M., Parker J., Brock Biology of Microorganisms, Prentice-Hall, Upper Saddle River 2000, 142-143Google Scholar

  • 13. Mitev S.V., Popova S. (1995). A model of yeast cultivation based on morphophysiological parameters. J. Chemical and Biochemical Engineering Quarterly, 3, Zagreb, 119-121.Google Scholar

  • 14. Pirt S.J. (1975). Principles of microbe and cell cultivation. Wiley, p. 274Google Scholar

  • 15. Popova S. (1997). Parameter identification of a model of yeast cultivation process with neural network, Bioprocess and Biosystems Engineering, 16(4), 243-245, DOI: 10.1007/s004490050315.CrossrefGoogle Scholar

  • 16. Rasic J. L. (2003). Microflora of the intestine probiotics. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of food sciences and nutrition (pp. 3911-3916). Oxford: Academic Press.Google Scholar

  • 17. Salminen S. (1996). Uniqueness of probiotic strains. IDF Nutrition Newsletter, 5, 16-18.Google Scholar

  • 18. Tripathi M.K., S.K. Giri (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of functional foods, 9: 225-241. DOI:10.1016/J.JFF.2014.04.030CrossrefGoogle Scholar

  • 19. Venturi, A., Gionchetti P., Rizzello F., Johansson R., Zucconi E., & Brigidi P. (1999). Impact on the composition of the faecal flora by a new probiotic preparation: Preliminary data on maintenance treatment of patients with ulcerative colitis. Alimentary Pharmacology & Therapeutics, 13(8), 1103-1108.Google Scholar

  • 20. Wang X., Xu P., Yuan Y., Liu C., Zhang C., Yang Z., Yang C., Ma C. (2006). Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium. Applied and Environmental Microbiology, 3367-3374 CrossrefGoogle Scholar

About the article

Published Online: 2015-08-04

Published in Print: 2015-07-01


Citation Information: Acta Universitatis Cibiniensis. Series E: Food Technology, Volume 19, Issue 1, Pages 61–72, ISSN (Online) 2344-150X, DOI: https://doi.org/10.1515/aucft-2015-0006.

Export Citation

© Lucian Blaga University. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in