Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Cibiniensis. Series E: Food Technology

The Journal of „Lucian Blaga“ University of Sibiu

2 Issues per year

Open Access
See all formats and pricing
More options …

Effect Of Five Proteases Including Alcalase, Flavourzyme, Papain, Proteinase K And Trypsin On Antioxidative Activities Of Casein Hydrolysate From Goat Milk

Guowei Shu
  • Corresponding author
  • School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’ an, 710021, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qian Zhang
  • School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’ an, 710021, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ He Chen
  • School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’ an, 710021, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hongchang Wan / Hong Li
Published Online: 2015-12-22 | DOI: https://doi.org/10.1515/aucft-2015-0015


Oxidation was related to the pathogenesis of human diseases. Adequate intake of antioxidant activity of food can reduce the levels of free radicals, prevent lipid peroxidation, and help the body against diseases. In the paper, casein from goat milk was hydrolyzed by five commercial proteases, namely, Alcalase, flavourzyme, papain, proteinase K and trypsin. The antioxidant activities of casein hydrolysates were assessed by evaluating hydrolysis degree, DPPH radical-scavenging activity, metal-chelating activity and superoxide radical scavenging activity. The results showed as follows: the DH of proteinase K, Alcalase, and trypsin were higher significantly than those of papain and flavourzyme. The Fe2+-chelation activity and superoxide radical scavenging activity of casein hydrolysates from goat milk by Alcalase was higher than the others, the DPPH scavenging activities of casein hydrolysates by Alcalase and papain was higher than the others and the DPPH scavenging activities by Alcalase and papain had no significant diffierence (p<0.05), so the optimal proteinase for hydrolysis casein from goat milk to produce antioxidant peptide was Alcalase.

Keywords: goat milk casein; Alcalase; enzymatic hydrolysis; antioxidative peptides


  • 1. Adler-Nissen, J.,(1986). Enzymatic hydrolysis of food protein. London: Elsevier Applied Science Publishers, 12–14.Google Scholar

  • 2. Agnihotri, M.K., and Prasad, V.S,(1993). Biochemistry and processing of goat milk and milk products. Small Rumin. Research, 12, 151–170.CrossrefGoogle Scholar

  • 3. Alferez, M. J. M., Lopez-Aliaga, I., Nestares, T., et al. (2006). Dietary goat milk improves iron bioavailability in rats with induced ferropenic anaemia in comparison with cow milk. International Dairy Journal, 16(7), 813-821.CrossrefGoogle Scholar

  • 4. Butterfield, D. A., Castenga, A., Pocernich, C. B., Drake, J., Scapagnini, G., Calabrese V., (2002). Nutritional approaches to combat oxidative stress in Alzheimer’s diseases. The Journal of Nutritional Biochemistry, Vol.13, pp.444–461.CrossrefGoogle Scholar

  • 5. Dalle-Donne, I., Rossi R., Colombo, R., et al. (2006). Biomarkers of oxidative damage in human disease. Clinical Chemistry, Vol.52, No.4, pp. 601-623.CrossrefWeb of ScienceGoogle Scholar

  • 6. Decker, E. A., Welch, B., 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal Agricultural Food Chemistry, Vol. 38, pp. 674–677.Google Scholar

  • 7. Dhalla, N. S., Temsah, R. M., Netticadan, T.,(2000). Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, Vol.18, No.6, pp. 655-673.CrossrefGoogle Scholar

  • 8. Halliwell, B., Gutteridge, J. M. C., (1990). Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol, Vol. 186, pp. 1–85.CrossrefGoogle Scholar

  • 9. Hettiarachchy, N. S., Glenn, K. C., Gnanasambandam, R., Johnson, M. G., (1996). Natural antioxidant extract from fenugreek (Trigonella foenumgraecum) for ground beef patties. J Food Sci, 61, 516–519.CrossrefGoogle Scholar

  • 10. Jae, Y. J., Pyo, J. P., Se, K. K., (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38, 45-50.CrossrefGoogle Scholar

  • 11. Jenner, P., (2003). Oxidative stress in Parkinson’s disease. Annals of Neurology, 53, S26-36.CrossrefGoogle Scholar

  • 12. Ji, L. L., (1995). Oxidative stress during exercise: implication of antioxidant nutrients. Free Radical Biology and Medicine, 18,1079-1086.CrossrefGoogle Scholar

  • 13. Jin Shi-lin, 1993. Several problems about the processing technology of goat milk. China's dairy industry, 21,154-158.Google Scholar

  • 14. Kondyli, E., Katsiarim, C., Voutsinas, L. P., (2007). Amino acid composition and nutritional value of goat milk from the indigenous Greek breed. Milchwissenschaft, 62,164-166.Google Scholar

  • 15. Liu Ping, Chen Li-bin, Yang Yan-jun, (2006). Production of antihypertensive peptides using enzymatic hydrolysis of corn protein. 27, 117-119.Google Scholar

  • 16. Lobo, V., Patil, A., Phatak, A., Chandra, N., (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4, 118–126.Google Scholar

  • 17. Marklund, S., Marklund, G., (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallal and a convenient assay for superoxide dismutase. Eur J Biochem. 47, 469-474.CrossrefGoogle Scholar

  • 18. Poli, G., Leonarduzzi, G,. Biasi, F., et al. (2004). Oxidative stress and cell signaling. Current Medicinal Chemistry, 11, 1163-1182.CrossrefGoogle Scholar

  • 19. Rafter, J. (2003). Probiotics and colon cancer. Best Prac. Res. Cli. Gastroentrol. 17, 849-859.Google Scholar

  • 20. Richmond, R., Halliwell, B., Chauhan, J., et al. (1981). Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds [J]. Anal Biochem. Vol. 118, 328-335.CrossrefGoogle Scholar

  • 21. Saiga, A., Tanabe, S., Nishimura, T., (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem. 51, 3661-3667.CrossrefGoogle Scholar

  • 22. Sánchez-Moreno, C., (2002). Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology International, 8, 121–137.CrossrefGoogle Scholar

  • 23. Shinde, A., Ganu, J., Naik, P., (2012). Effect of free radicals & antioxidants on oxidative stress:A review. Journal of Dental & Allied Sciences,1, 63–66.CrossrefGoogle Scholar

  • 24. Teng Bo, Chen Cheng, Xu Su, et al., (2005). Functional studies of milk protein bioactive peptides. China dairy industry, 33, 16-18.Google Scholar

  • 25. Wang J., Sun B.G., Cao Y. P., et al. (2009). Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food and Chemical Toxicology, 47, 1591-1599.Web of ScienceCrossrefGoogle Scholar

  • 26. Wang W., Mejia E.G., (2005). A new frontier in soy bioactive peptides that may prevent age-related diseases. Comp. Rev. Food Sci. Food Safety. 4, 63-78.CrossrefGoogle Scholar

  • 27. Wu H.C., Chen H.M., Shiau C.Y., (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36, 949–957.CrossrefGoogle Scholar

  • 28. Xu Li, Zhao Zhong-yan, Li Hong-mei, et al., (2007). Oxidative activity of small molecule enzymatic hydrolysate solution of soybean protein. Journal of jilin agricultural university, 29, 48-52.Google Scholar

About the article

Published Online: 2015-12-22

Published in Print: 2015-12-01

Citation Information: Acta Universitatis Cibiniensis. Series E: Food Technology, Volume 19, Issue 2, Pages 65–74, ISSN (Online) 2344-150X, DOI: https://doi.org/10.1515/aucft-2015-0015.

Export Citation

© 2015 Guowei Shu et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in