Jump to ContentJump to Main Navigation
Show Summary Details
More options …

ACTA Universitatis Cibiniensis

Technical Series

2 Issues per year

Open Access
Online
ISSN
1583-7149
See all formats and pricing
More options …

Aspects Regarding The Possibility To Use “Neural Networks” In The Selection Of The “R & D” Strategy In The “Nonconventional Technologies” Field

Simona-Ioana Marinescu
  • ”Lucian Blaga” University of Sibiu, “Hermann Oberth” Engineering Faculty, Strada Emil Cioran, nr.4, Sibiu, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mihail Titu
  • “Lucian Blaga” University of Sibiu, “Hermann Oberth” Engineering Faculty, Strada Emil Cioran, nr.4, Sibiu, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-23 | DOI: https://doi.org/10.1515/aucts-2015-0086

Abstract

The paper referes to the possibility of using neural networks in selecting the “Research-Development” strategy, in the nonconventional technologies field. It presents a selection and the main key elements of the Research and Development (R & D) strategies, applicable in the nonconventional technologies (NT) field and, thus, the specific analytical elements of such a methodology. It also refers to the possibility of using neural networks (“NN”) up to the level of taking managerial decisions regarding the manufacturing processes. Research Objectives: Defining components from the neuron ‘s structure into the organizational systems, in order to select ptime strategies for the organizational management. Expected Results: Transposing the entire methodology in a software.

Keywords: artificial network; neural network; artificial intelligence; management; research-development

4. References

  • 1. Dzitac, I.-Artificial Inteligence, Aurel Vlaicu University Publisher, Arad (2008).Google Scholar

  • 2. Freeman, J., Skapura, D.-Neural Networks, Algorithms, Applications and Programming Techniques, Addison-Wesley Publishing Company Inc. (1992).Google Scholar

  • 3. Rosenblatt, F. - The Perceptron: A probabilistic Model for Information Storage and Organization in the Brain, Psyhological Review, 65, (1958).Google Scholar

  • 4. Marinescu, R.D., ş.a.- Managementul Tehnologiilor Neconvenţionale, Vol.1, Editura Economică, Bucureşti, ISBN 973-9198-07-4, (1995).Google Scholar

  • 5. Neagu, C., Ioniţă, C.- Reţele neuronale. Teorie şi Aplicaţii în modelarea şi simularea proceselor şi sistemelor de producţie, Editura Academiei, Bucuresti (2010).Google Scholar

  • 6. Enachescu, C. – Calculul Neuronal (2008).Google Scholar

  • 7. Dumitrescu, D., Hariton, C. – Reţele neuronale. Teorie şi aplicaţii. Editura Teora, Bucureşti, (1996).Google Scholar

  • 8. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, (2011).Google Scholar

  • 9. T. M. Mitchell, Machine Learning, McGraw-Hill Science, (1997).PubMedGoogle Scholar

  • 10. H., Hakimpoor, K., s.a.- Artificial Neural Networks’ Applications in Management, World Applied Sciences Journal 14 (7): 1008-1019, (2011).Google Scholar

About the article

Published Online: 2015-09-23

Published in Print: 2015-09-01


Citation Information: ACTA Universitatis Cibiniensis, ISSN (Online) 1583-7149, DOI: https://doi.org/10.1515/aucts-2015-0086.

Export Citation

© Marinescu Simona-Ioana et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in