Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ovidius University Annals of Chemistry

Analele Universitatii "Ovidius" Constanta - Seria Chimie

2 Issues per year

Open Access
Online
ISSN
2286-038X
See all formats and pricing
More options …

Photocatalytic study of organosilane-modified zinc oxide nanoparticles

Aurel Tăbăcaru
  • Corresponding author
  • Center of Nanostructures and Functional Materials – CNMF, Faculty of Engineering, “Dunărea de Jos” University of Galați, 111 Domneasca Street, 800201, Galați, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariana Buşilă
  • Center of Nanostructures and Functional Materials – CNMF, Faculty of Engineering, “Dunărea de Jos” University of Galați, 111 Domneasca Street, 800201, Galați, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viorica (Ghisman) Pleşcan
  • Center of Nanostructures and Functional Materials – CNMF, Faculty of Engineering, “Dunărea de Jos” University of Galați, 111 Domneasca Street, 800201, Galați, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viorica Muşat
  • Corresponding author
  • Center of Nanostructures and Functional Materials – CNMF, Faculty of Engineering, “Dunărea de Jos” University of Galați, 111 Domneasca Street, 800201, Galați, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/auoc-2015-0012

Abstract

In our recent studies, we have investigated the tunability of optical properties of zinc oxide nanoparticles (ZnO NPs) through surface modification with organosilane surfactants. In the present paper, the effect of ZnO NPs modified with variable amount of 3-(trimethoxysilyl)propylmethacrylate (MPS) surfactant was investigated toward the photocatalytic degradation of methylene blue (MB), using two different UV light sources emitting at 254 nm and 365 nm. While the maximum photodegradation efficiency of 63% was reached by ZnO NPs loaded with the highest concentration of MPS upon exposure at 254 nm, in the case of UV exposure at 365 nm an opposite photodegradation trend was observed. Actually, a significant photodegradation efficiency of 95% was recorded by the unmodified ZnO, followed by ZnO NPs modified with 2% MPS for which the photodegradation efficiency amounted to 80%, thus highlighting their best photocatalytic performance.

Keywords: zinc oxide nanoparticles; photocatalysis; photodegradation efficiency; methylene blue

References

  • [1]. M.A. Hood, M. Mari, R. Muñoz-Espí, Materials 7, 4057 (2014).Google Scholar

  • [2]. J. Li and J.Z. Zhang, Coord. Chem. Rev. 253, 3015 (2009).Google Scholar

  • [3]. C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann and J. Geurts, Zinc Oxide From Fundamental Properties Towards Novel Applications, Springer-Verlag, Berlin, 2010.Google Scholar

  • [4]. L. Qian, Y. Zheng, J. Xue and P.H. Holloway, Nature Photonics 5, 543 (2011).CrossrefGoogle Scholar

  • [5]. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J.Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).Google Scholar

  • [6]. J. Mawyin, Y. Shupyk, M. Wang, G. Poize, P. Atienzar, T. Ishwara, J.R. Durrant, J. Nelson, D. Kanehira, N. Yoshimoto, C. Martini, E. Shilova, P. Secondo, H. Brisset, F. Fages and J. Ackermann, J. Phys. Chem. C 115, 10881 (2011).Google Scholar

  • [7]. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 2945 (2012).Google Scholar

  • [8]. M. Karimi, J. Saydi, M. Mahmoodi, J. Seidi, M. Ezzati, S. Shamsi Anari and B. Ghasemian, J. Phys. Chem. Solid 74, 1392 (2013).CrossrefGoogle Scholar

  • [9]. Y. Martynova, B.-H. Liu, M.E. McBriarty, I.M.N. Groot, M.J. Bedzyk, S. Shaikhutdinov and H.-J. Freund, J. Catal. 301, 227 (2013).Google Scholar

  • [10]. X. Tang, E.S.G. Choo, L. Li, J. Ding and J. Xue, Langmuir 25, 5271 (2009).CrossrefGoogle Scholar

  • [11]. M. Busila, V. Musat, T. Textor and B. Mahltig, RSC Adv. 5, 21562 (2015).Google Scholar

  • [12]. D.M. Yebra, S. Kiil, C.E. Weinell and K. Dam-Johansen, Prog. Org. Coat. 56, 327 (2006).CrossrefGoogle Scholar

  • [13]. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).CrossrefGoogle Scholar

  • [14]. P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy and S.J. Hinder, J. Phys. Chem. C 112, 7644 (2008).Google Scholar

  • [15]. S. Funk, B. Hokkanen, U. Burghaus, A. Ghicov and P. Schmuki, Nanoletters 7, 1091 (2007).CrossrefGoogle Scholar

  • [16]. T. Zhang, T. Oyama, S. Horikoshi, J. Zhao, N. Serpone and H. Hidaka, Appl. Catal. B: Environ. 42, 13 (2003).CrossrefGoogle Scholar

  • [17]. T. Zhang, L. You and Y. Zhang, Dyes Pigments 68, 95 (2006).Google Scholar

  • [18]. J. Emsley, Titanium. Nature’s Building Blocks: An A–Z Guide to the Elements, Oxford University Press, Oxford, England, 2001.Google Scholar

  • [19]. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. C 77, 65 (2003).Google Scholar

  • [20]. J.H. Sun, S.Y. Dong, Y.K. Wang and S.P. Sun, J. Hazard. Mater. 172, 1520 (2009).Google Scholar

  • [21]. P.V. Kamat, R. Huehn and R. Nicolaescu, J. Phys. Chem. B 106, 788 (2002).Google Scholar

  • [22]. S.C. Padmanabhan, S.C. Pillai, J. Colreavy, S. Balakrishnan, D.E. McCormack, T.S. Perova, S.J. Hinder and J.M. Kelly, Chem. Mater. 19, 4474 (2007).CrossrefGoogle Scholar

  • [23]. J.M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A.R. González-Elipe and A. Fernández, Appl. Catal. B: Environ. 13, 219 (1997).CrossrefGoogle Scholar

  • [24]. K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, J. Dutta, Mater. Res. Bull. 63, 134 (2015).Google Scholar

  • [25]. M. Ibanescu (Busila), V. Musat, T. Textor, V. Badilita, B. Mahltig, J. Alloys Compd. 610, 244 (2014).Google Scholar

  • [26]. G. Merga, L.C. Cass, D.M. Chipman and D. Meisel, J. Am. Chem. Soc. 130, 7067 (2008).Google Scholar

  • [27]. V. Musat, A. Tabacaru, B.S. Vasile and V.-A. Surdu, RSC Adv. 4, 63128 (2014).Google Scholar

  • [28]. A. Tabacaru, V. Musat, N. Tigau, B.S. Vasile and V.-A. Surdu, Appl. Surf. Sci., to be published.Google Scholar

  • [29]. A. Tabacaru, V. Musat, R.M. Dinica and C. Gheorghies, Rev. Chim. (Bucharest), to be published.Google Scholar

  • [30]. A.L. Patterson, Phys. Rev. 56, 972 (1939).Google Scholar

  • [31]. H.P. Klug and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York, 1974.Google Scholar

  • [32]. Powder Diffract. File, JCPDSB Internat. Centre Diffract. Data, PA 19073–3273, U.S.A. (2001).Google Scholar

  • [33]. K.J. Klabunde (Ed.), Nanoscale Materials in Chemistry, John Wiley & Sons, Inc., USA, 2002.Google Scholar

  • [34]. W.S. Chiu, P.S. Khiew, M. Cloke, D. Isa, T.K. Tan, S. Radiman, R. Abd-Shukor, M.A. Abd. Hamid, N.M. Huang, H.N. Limd and C.H. Chia, Chem. Eng. J. 158, 345 (2010).Google Scholar

  • [35]. M. (Busila) Ibanescu, V. Musat, T. Textor, V. Badilita, B. Mahltig, The Annals of “Dunarea de Jos” of Galati, Fascicle IX, Metallurgy and Materials Science 2, 54 (2013).Google Scholar

  • [36]. R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technology 189, 426 (2009).Google Scholar

About the article

Received: 2015-09-17

Revised: 2015-09-21

Accepted: 2015-09-21

Published Online: 2015-12-30

Published in Print: 2015-12-01


Citation Information: Ovidius University Annals of Chemistry, ISSN (Online) 2286-038X, DOI: https://doi.org/10.1515/auoc-2015-0012.

Export Citation

© 2015 Ovidius University Press. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in