Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ovidius University Annals of Chemistry

Analele Universitatii "Ovidius" Constanta - Seria Chimie

2 Issues per year

Open Access
Online
ISSN
2286-038X
See all formats and pricing
More options …

Electrochemical oxidation of salicylhydroxamic acid on Pt electrode

Nady Hashem El-Sayed
  • Corresponding author
  • Chemistry Department, Faculty of Science, Fayoum University, Fayoum-Egypt
  • Chemistry Department, Faculty of Science& Arts in Qurayat, Al-Jouf University, KSA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eid Eissa Salama
  • Chemistry Department, Faculty of Science& Arts in Qurayat, Al-Jouf University, KSA
  • Chemistry Department, Faculty of Science, Suez Canal University, Ismailia-Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-28 | DOI: https://doi.org/10.1515/auoc-2016-0002

Abstract

The electrochemical oxidation behavior of salicylhydroxamic acid (SHAM) on a Pt electrode was investigated in aqueous solution of different pHs, containing 10 mM of SHAM, at 25°C, by cyclic voltammetry technique. The results indicate that the SHAM was oxidized more easily in alkaline medium than acidic and neutral mediums, and the oxidation peaks of SHAM shifted toward lower potential values by increasing pH values. The SHAM electrooxidation involves an irreversible transfer of one or two electron, depending on the pH of solution. If solution pH is lower than 3 and higher than 7, the two electron transfer is involved in the electrooxidation. While, from pH=3 to pH=7, the SHAM electrooxidation involves an irreversible transfer of one electron and two protons in the first step, in agreement with the one step one-electron mechanism. The effect of SHAM concentration on the electrode reaction was investigated in artificial saliva solution. SHAM gives a single irreversible oxidation wave over the wide concentration range studied. Possible mechanism of SHAM electrooxidation was proposed.

Keywords : salicylhydroxamic acid; cyclic voltammetry; electrooxidation; platinum electrode

References

  • [1] C.J. Marmion, D. Griffith, K.B. Nolan, European Journal of Inorganic Chemistry 15, 3003-3016 (2002).Google Scholar

  • [2] C. Indiani, E. Santoni, M. Becucci, A. Boffi, K. Fukuyama, G. Smulevich, Biochemistry 47, 14066-14074 (2003).CrossrefGoogle Scholar

  • [3] E.C. O’Brien, E. Farkas, M.J. Gil, D. Fitzgerald, A. Castineras, K.B. Nolan, Journal of Inorganic Biochemistry 79, 47-51 (2000).CrossrefGoogle Scholar

  • [4] M. Arnold, D.A. Brown, O. Deeg, W. Errington, W. Haase K. Herlihy, T.J. Kemp, H. Nimir, R. Werner, Inorganic Chemistry 37, 2920 -2925 (1998).CrossrefGoogle Scholar

  • [5] E.M.F. Muri, M.J. Nieto, R.D. Sindelar, J.S. Williamson, Current Medicinal Chemistry 9, 1631-1653 (2002).CrossrefGoogle Scholar

  • [6] W.P. Steward, A.L. Thomas, Expert opinion on investigational drugs 9, 2913-2922 (2002).Google Scholar

  • [7] D. A. Brown, L.P. Cuffe, N. J Fitzpatrick, Á.T. Ryan, Journal of Inorganic Chemistry 43, 297-302 (2003).CrossrefGoogle Scholar

  • [8] P. Reddy, Y. Maeda, K. Hotary, C. Liu, L.L. Reznikov, C.A. Dinarello, J.L.M. Ferrara, Proceedings of the National Academy of Sciences of the United States of America 101, 3921-3926 (2004).CrossrefGoogle Scholar

  • [9] W.O. Foye, H.S. Hong, C.M. Kim, E.L. Prien, Investigative urology 14, 33-37 (1976).Google Scholar

  • [10] A.A.Salem, M.M. Omar, Turkish Journal of Chemistry 27, 383-393 (2002).Google Scholar

  • [11] M. Tian, B. Adams, J.L. Wen, R.M. Asmussen, A.C. Chen, Electrochimca Acta 54, 3799-3805 (2009).CrossrefGoogle Scholar

  • [12] Y. Wang, H. Jiang, J.J. Tian, J.B. He, Electrochimica Acta 125, 133-140 (2014).CrossrefGoogle Scholar

  • [13] V. Supalkova, J. Petrek, L. Havel, S. Krizkova, J. Petrlova, V. Adam, D. Potesil, P. Babula, M. Beklova, A. Horna, R. Kizek, Sensors 6, 1483-1497 (2006).CrossrefGoogle Scholar

  • [14] I. Gualandi, E. Scavetta, S. Zappoli, D. Tonelli, Biosens. Bioelectron. 26, 3200-3206 (2011).CrossrefGoogle Scholar

  • [15] K. Kratochvilová, I. Hoskovcová, J. Jirkovsk´y, J. Klíma, J. Ludvík, Electrochimca Acta 40, 2603-2609 (1995).CrossrefGoogle Scholar

  • [16] W.D. Zhang, B. Xu, Y.X. Hong, Y.X. Yu, J.S. Ye, J.Q. Zhang, J. Solid State Electrochemistry 14, 1713-1718 (2010).Google Scholar

  • [17] J. Xu, X. Zhuang, Talanta 38, 1191-1195 (1991).CrossrefGoogle Scholar

  • [18] J. Li, J. Yu, Q. Lin, Analytical Letter 43, 631-643 (2010).CrossrefGoogle Scholar

  • [19] E. Al Shamaileh, M. Alawi, Y. Dahdal, H. Saadeh, Jordan Journal of Pharmaceutical Sciences 1, 55-64 (2008).Google Scholar

  • [20] Y. Wang, H. Jiang, J. Tian, J. He, Electrochemica Acta 125, 133-140 (2014).CrossrefGoogle Scholar

  • [21] E. Wudarska, E. Chrzescijanska, E. Kusmierek, J. Rynkowski, Electrochimica Acta 93, 189-194 (2013).CrossrefGoogle Scholar

  • [22] E. Chrzescijanska , E. Wudarska, E. Kusmierek, J. Rynkowski, Journal of Electroanalytical Chemistry 713, 17-21 (2014).Google Scholar

About the article

Received: 2015-11-17

Revised: 2016-01-20

Accepted: 2016-01-22

Published Online: 2016-06-28

Published in Print: 2016-06-01


Citation Information: Ovidius University Annals of Chemistry, ISSN (Online) 2286-038X, DOI: https://doi.org/10.1515/auoc-2016-0002.

Export Citation

© Ovidius University Press. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in