## Abstract

In this paper, we define expanding mappings in the setting of partial metric spaces analogous to expanding mappings in metric spaces. We also obtain some results for two mappings to the setting of partial metric spaces

Show Summary Details# Fixed point theorems for expanding mappings in partial metric spaces

#### Open Access

## Abstract

## About the article

More options …# Analele Universitatii "Ovidius" Constanta - Seria Matematica

### The Journal of "Ovidius" University of Constanta

More options …

Editor-in-Chief: Flaut, Cristina

1 Issue per year

IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346

Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Xianjiu Huang / Chuanxi Zhu / Xi Wen

In this paper, we define expanding mappings in the setting of partial metric spaces analogous to expanding mappings in metric spaces. We also obtain some results for two mappings to the setting of partial metric spaces

Keywords: expanding mappings; fixed point theorem; partial metric spaces

[1] I. Altun, F. Sola, H. Simsek,

*Generalized contractions on partial metric**spaces*, Topology Appl. 157(18) (2010), 2778-2785.Web of ScienceGoogle Scholar[2] M. Bukatin, J. Scott,

*Towards computing distances between programs via**Scott domains, in: Logical Foundations of Computer Sicence*, Lecture Notes in Computer Science (eds. S. Adian and A. Nerode), vol. 1234, Springer (Berlin, 1997), 33-43.Google Scholar[3] M. Bukatin, S. Shorina,

*Partial metrics and co-continuous valuations, in:**Foundations of Software Science and Computation Structures*, Lecture Notes in Computer Science (ed. M. Nivat), vol. 1378, Springer (Berlin, 1998), 33-43.Google Scholar[4] P. Z. Daffer, H. Kaneko,

*On expansive mappings*, Math. Japonica. 37 (1992), 733-735.Google Scholar[5] P. Fletcher, W. Lindgren,

*Quasi-Uniform Spaces*, Marcel Dekker, New York, 1982.Google Scholar[6] R. Heckmann,

*Approximation of metric spaces by partial metric spaces*, Appl. Categ. Structures. 7 (1999), 71-83.Google Scholar[7] G. Jungck,

*Common*fix*ed points for noncontinuous nonself mappings on**nonmetric spaces*, Far East J. Math. Sci. 4 (2) (1996), 199-212.Google Scholar[8] R. Kannan,

*Some results on*fix*ed points*, Bull. Calcutta Math. Soc. 60 (1968), 71-76. Google Scholar[9] H. Kunzi,

*Nonsymmetric distances and their associated topologies: About**the origins of basic ideas in the area of asymmetric topology*, in: Handbook of the History of General Topology (eds. C.E. Aull and R. Lowen), vol. 3, Kluwer Acad. Publ. (Dordrecht, 2001), 853-968.Google Scholar[10] S. Matthews,

*Partial metric topology*, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 (1994), 183-197.Google Scholar[11] S. Oltra, O. Valero,

*Banach's*fix*ed point theorem for partial metric spaces*, Rend. Ist. Mat. Univ. Trieste. 36 (2004), 17-26.Google Scholar[12] S. O’Neill,

*Partial metrics, valuations and domain theory*, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 806 (1996), 304-315.Google Scholar[13] B. Rhoades,

*A comparison of various de*fi*nitions of contractive mappings*, Trans. Amer. Math. Soc. 226 (1977), 257-290.Google Scholar[14] S. Romaguera, M. Schellekens,

*Duality and quasi-normability for complexity spaces*, Appl. Gen. Topol. 3 (2002), 91-112.Google Scholar[15] S. Romaguera, M. Schellekens,

*Weightable quasi-metric semigroups and**semilattices*, In: Proc. MFCSIT2000, Electronic Notes in Theoretical Computer Science. 40 (2003), 12 pages.Google Scholar[16] M. Schellekens,

*A characterization of partial metrizability: domains are**quanti*fi*able*, Theoret. Comput. Sci. 305 (2003), 409-432.Google Scholar[17] M. Schellekens,

*The correspondence between partial metrics and semivaluations*, Theoret. Comput. Sci. 315 (2004), 135-149.Google Scholar[18] O. Valero,

*On Banach*fix*ed point theorems for partial metric spaces*, Appl. Gen. Topol. 6 (2) (2005), 229-240.Google Scholar[19] S. Z. Wang, B. Y. Li, Z. M. Gao, K. Iseki,

*Some*fix*ed point theorems for**expansion mappings*, Math. Japonica. 29 (1984), 631-636.Google Scholar[20] X. Wen, X. J. Huang,

*Common*fix*ed point theorem under contractions in**partial metric spaces*, J. Comput. Anal. Appl. 13(3) (2011), 583-589. Google Scholar

**Published Online**: 2013-05-17

**Published in Print**: 2012-05-01

**Citation Information: **Analele Universitatii "Ovidius" Constanta - Seria Matematica, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/v10309-012-0014-7.

This content is open access.

## Comments (0)