Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Editor-in-Chief: Flaut, Cristina

1 Issue per year


IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Open Access
Online
ISSN
1844-0835
See all formats and pricing
More options …

Commutativity of near-rings with (σ;τ)-derivations

Ahmed A. M. Kamal
  • Corresponding author
  • Department of Mathematics, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Kingdom of Saudi Arabia. Permanent address: Department of Mathematics, Faculty of Sciences, Cairo University, Giza, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Khalid H. Al-Shaalan
Published Online: 2013-07-30 | DOI: https://doi.org/10.2478/auom-2013-0007

Abstract

In this paper we study some conditions under which a near-ring R admitting a (multiplicative) (σ; τ )-derivation d must be a commutative ring with constrained-suitable conditions on d, σ and τ. Consequently, we obtain some results which generalize some recent theorems in the literature.

Keywords : zero divisors; (σ;τ)-derivations; 3-prime near-rings; commutativity

  • [1] M. Ashraf, A. Ali and S. Ali, (σ, τ )- derivations on prime near-rings, Arch. Math. (Brno) 40 (2004), no. 3, 281{286.Google Scholar

  • [2] M. Ashraf and S. Ali, On (σ, τ )-derivations of prime near-rings, Trends in Theory of Rings and Modules. (S. Tariq Rizvi & S. M. A. Zaidi, (Eds.)), Anamaya Publishers, New Delhi, (2005), 5-10.Google Scholar

  • [3] M. Ashraf and S. Ali, On (σ, τ )-derivations of prime near-rings-II, Sarajevo J. Math. 4(16) (2008), no. 1, 23{30.Google Scholar

  • [4] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and near-fields (Tübingen, 1985), 31{35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.Google Scholar

  • [5] Y. Fong, W.-F. Ke, and C.-S.Wang, Nonexistence of derivations on trans-formation near-rings, Comm. Algebra 28 (2000), 1423{1428.Google Scholar

  • [6] O. Golbasi, and N. Aydin, Results on prime near-rings with (σ, τ )-derivation, Math. J. Okayama Univ. 46 (2004), 1{7.Google Scholar

  • [7] O. Golbasi, On a theorem of Posner for 3-prime near-rings with (σ, τ )-derivation, Hacet. J. Math. Stat. 36 (2007), no. 1, 43{47.Google Scholar

  • [8] A. A. M. Kamal, σ-derivations on prime near-rings, Tamkang J. Math. 32(2001), no.2, 89{93.Google Scholar

  • [9] A. A. M. Kamal and K. H. Al-shaalan, Existence of derivations on near-rings, to appear in Math. Slovaca.Web of ScienceGoogle Scholar

  • [10] S. Ligh, A note on matrix near rings, J. London Math. Soc. (2) 11 (1975), no. 3, 383{384.Google Scholar

  • [11] J. D. P. Meldrum, "Near-rings and their links with groups", Research Notes in Mathematics, 134. Pitman (Advanced Publishing Program), Boston, MA, 1985.Google Scholar

  • [12] G. Pilz, "Near-rings. The theory and its applications", Second edition. North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983.Google Scholar

  • [13] M. S. Samman, Existence and Posner's theorem for α-derivations inprime near-rings, Acta Math. Univ. Comenian., (N.S.) 78 (2009), no.2, 37-42.Google Scholar

  • [14] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), no. 2, 361-366.Google Scholar

About the article

Published Online: 2013-07-30

Published in Print: 2013-03-01


Citation Information: Analele Universitatii "Ovidius" Constanta - Seria Matematica, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/auom-2013-0007.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in