[1] W.H. Abdi, On *q*-Laplace Transforms, *Proc. Nat. Acad. Sci. India*, **29** (1961), 389-408.Google Scholar

[2] M.H. Abu-Risha, M.H. Annaby, M.E. H.Ismail and Z.S. Mansour, Linear *q*-difference equations, *Z. Anal. Anwend.*, **26 **(2007), 481-494.CrossrefGoogle Scholar

[3] G. Bangerezako, Variational calculus on *q*-nonuniform lattices, *J. Math. Anal. Appl.*, **306**(**1**) (2005), 161-179.Google Scholar

[4] G. Gasper and M. Rahman, *Generalized Basic Hypergeometric Series*, Cambridge University Press, Cambridge, 1990.Google Scholar

[5] W. Hahn, Beitrage Zur Theorie der Heineschen Reihen, die 24 Integrale der hypergeometrischen *q*-Diferenzengleichung, das *q*-Analog on der Laplace Transformation, *Math. Nachr.*, **2 **(1949), 340-379.CrossrefGoogle Scholar

[6] F. H. Jackson, On *q*-definite Integrals, *Quarterly J. Pure and Appl. Mathematics*, **41 **(1910), 193-203.Google Scholar

[7] V.G. Kac, and P. Cheung, *Quantum Calculus*, Universitext, Springer- Verlag, New York, 2002.Google Scholar

[8] V.G. Kac and A. De Sole, On Integral representations of *q*-gamma and *q*-beta functions, *Rend. Mat. Acc. Lincei ***9 **(2005), 11-29. math.QA/0302032.Google Scholar

[9] E. Koelink, Quantum groups and *q*-special functions, *Report *96-10 (1996), Universiteit van Amsterdam.Google Scholar

[10] Z.S.I. Mansour, Linear sequential *q*-difference equations of fractional order, *Fract. Calc. Appl. Anal.*, **12**(**2**) (2009), 159-178.Google Scholar

[11] S.D. Purohit and S.L. Kalla, On *q*-Laplace transforms of the *q*-Bessel functions, *Fract. Calc. Appl. Anal*., **10 **(2) (2007) *, *189-196.Google Scholar

[12] S.D. Purohit and S.L. Kalla, On fractional partial differential equations related to quantum mechanics, *J. Phys. A, Math. Theor.*, **44 **(4) (2011) *,* 045202 (8pp).Google Scholar

[13] R.K. Saxena, A.M. Mathai and H.J. Haubold, Solution of generalized fractional reaction-diffusion equations, *Astrophys. Space Sci.*, **305 **(2006) *,* 305-313.Google Scholar

[14] R.K. Saxena, R. Saxena and S.L. Kalla, Computational solution of a fractional generalization of the Schr¨odinger equation occurring in quantum mechanics, *Appl. Math. Comput.*, **216 **(2010) *, *1412-1417.Web of ScienceGoogle Scholar

[15] R.K. Saxena, R. Saxena and S.L. Kalla, Solution of space-time fractional Schr¨odinger equation occurring in quantum mechanics, *Fract. Calc. Appl. Anal.*, **13**(**2**) (2010) *, *177-190.Google Scholar

[16] G. K.Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, *Int. J. Math. Educ. Sci. Technol.*, **24 **(1993), no. 1, 35-43*.*Google Scholar

## Comments (0)