[1] M. Acu, On a subclass of «-uniformly close-to-convex functions, Gen. Math., 14(2006) 55 - 64.Google Scholar

[2] H. S. Al-Amiri and T. S Fernando, On close-to-convex functions of complex order, Int. J. Math. Math. Sci., 13(1990) 321 - 330.CrossrefGoogle Scholar

[3] S. D. Bernardi, Convex and Starlike Univalent Functions, Trans. Amer. Math. Soci., 135(1969) 429 - 446.CrossrefGoogle Scholar

[4] A. W. Goodman, Univalent functions, Vol. I, II, Mariner Publishing Company, Tempa, Florida, U. S. A, 1983.Google Scholar

[5] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999) 327 - 336.CrossrefGoogle Scholar

[6] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000) 647 - 657.Google Scholar

[7] R. J. Libra, Some Classes of Regular Univalent Functions, Proc. Amer. Math. Soc., 16(1965) 755 - 758.CrossrefGoogle Scholar

[8] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations, 56(1985), 297 - 308.Google Scholar

[9] K. I. Noor, On a generalization of close-to-convexity, Int. J. Math. Math. Sci., 6(2)(1983) 327 - 334.CrossrefGoogle Scholar

[10] K. I. Noor, On a generalization of uniformly convex and related functions, Comput. Math. Appl., 61 (1) (2011) 117 - 125.CrossrefWeb of ScienceGoogle Scholar

[11] K. I. Noor, On some subclasses of functions with bounded boundary and bounded radius rotation, Pan Amer. Math. J., 6(1996) 75 - 81.Google Scholar

[12] K. I. Noor, Quasi-convex functions of complex order, Pan Amer. Math. J., 3(2)(1993) 81 - 90.Google Scholar

[13] K. I. Noor and D. K. Thomas, Quasi-convex univalent functions, Int. J. Math. Math. Sci., 3(1980)255 - 266.CrossrefGoogle Scholar

[14] K. I. Noor, M. Arif and W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215(2)(2009) 629 - 635.Web of ScienceCrossrefGoogle Scholar

[15] K. I. Noor, W. Ul-Haq, M. Arif and S. Mustafa, On Bounded Boundary and Bounded Radius Rotations, J. Inequ. Appl., (2009) articles ID 813687, 12 pages.CrossrefGoogle Scholar

[16] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10(1971) 7 - 16.Google Scholar

[17] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943) 48 - 82. Google Scholar

## Comments (0)