Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Editor-in-Chief: Flaut, Cristina

1 Issue per year

IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Open Access
See all formats and pricing
More options …

Three solutions to a p(x)-Laplacian problem in weighted-variable-exponent Sobolev space

Wen-Wu Pan
  • Corresponding author
  • Department of Science, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ghasem Alizadeh Afrouzi
  • Corresponding author
  • Department of Mathematics, Faculty of Mathematical sciences, University of Mazandaran, 47416-1467 Babolsar, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Li
Published Online: 2013-09-19 | DOI: https://doi.org/10.2478/auom-2013-0033


In this paper, we verify that a general p(x)-Laplacian Neumann problem has at least three weak solutions, which generalizes the corresponding result of the reference [R. A. Mashiyev, Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent, Arab. J. Sci. Eng. 36 (2011) 1559-1567].

Keywords: p(x)-Laplacian problems; Neumann problems; Ricceri's variational principle

  • [1] G. Anello and G. Cordaro. Existence of solutions of the Neumann prob­lem for a class of equations involving the p-Laplacian via a variational principle of Ricceri. Arch. Math. (Basel), 79(4):274-287, 2002.Google Scholar

  • [2] G. Bonanno. A minimax inequality and its applications to ordinary dif­ferential equations. J. Math. Anal. Appl., 270(1):210-229, 2002.Google Scholar

  • [3] G. Bonanno. Some remarks on a three critical points theorem. Nonlinear Anal., 54(4):651-665, 2003.Google Scholar

  • [4] G. Bonanno and P. Candito. Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian. Arch. Math. (Basel), 80(4):424-429, 2003.Google Scholar

  • [5] D. Cruz-Uribe, L. Diening, and P. Hasto. The maximal operator on weighted variable lebesgue spaces. Frac. Calc. Appl. Anal., 14:361-374, 2011.Web of ScienceGoogle Scholar

  • [6] G. Dai. Three solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian. Nonlinear Anal., 70(10):3755-3760, 2009.Google Scholar

  • [7] X. Fan. Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl., 312(2):464-477, 2005.Google Scholar

  • [8] X. Fan, J. Shen, and D. Zhao. Sobolev embedding theorems for spaces Wk,p(x)(n). J. Math. Anal. Appl., 262(2):749-760, 2001.Google Scholar

  • [9] X. Fan and D. Zhao. On the spaces Lp(x)(Q) and Wm,p(x)(Q). J. Math. Anal. Appl., 263(2):424-446, 2001.Google Scholar

  • [10] O. Kovacik and J. Rakosnik. On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J., 41(116)(4):592-618, 1991.Google Scholar

  • [11] Q. Liu. Existence of three solutions for p(x)-Laplacian equations. Non­linear Anal., 68(7):2119-2127, 2008.Google Scholar

  • [12] R. Mashiyev. Three Solutions to a Neumann Problem for Elliptic Equa­tions with Variable Exponent. Arab. J. Sci. Eng., 36:1559-1567, 2011.CrossrefGoogle Scholar

  • [13] M. Mihǎilescu. Existence and multiplicity of solutions for a Neu­mann problem involving the p(x)-Laplace operator. Nonlinear Anal., 67(5):1419-1425, 2007.Google Scholar

  • [14] M. Mihǎilescu and V. Rǎdulescu. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462(2073):2625-2641, 2006.Google Scholar

  • [15] B. Ricceri. A three critical points theorem revisited. Nonlinear Anal., 70(9):3084-3089, 2009.Google Scholar

  • [16] M. Růžička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.Google Scholar

  • [17] S. Samko. Denseness of C°°(Rn) in the generalized Sobolev spaces WM,P{X)(rN). In Direct and inverse problems of mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333-342. Kluwer Acad. Publ., Dordrecht, 2000. Google Scholar

About the article

Published Online: 2013-09-19

Published in Print: 2013-06-01

Citation Information: Analele Universitatii "Ovidius" Constanta - Seria Matematica, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/auom-2013-0033.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in