[1] G. Anello and G. Cordaro. Existence of solutions of the Neumann problem for a class of equations involving the p-Laplacian via a variational principle of Ricceri. Arch. Math. (Basel), 79(4):274-287, 2002.Google Scholar

[2] G. Bonanno. A minimax inequality and its applications to ordinary differential equations. J. Math. Anal. Appl., 270(1):210-229, 2002.Google Scholar

[3] G. Bonanno. Some remarks on a three critical points theorem. Nonlinear Anal., 54(4):651-665, 2003.Google Scholar

[4] G. Bonanno and P. Candito. Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian. Arch. Math. (Basel), 80(4):424-429, 2003.Google Scholar

[5] D. Cruz-Uribe, L. Diening, and P. Hasto. The maximal operator on weighted variable lebesgue spaces. Frac. Calc. Appl. Anal., 14:361-374, 2011.Web of ScienceGoogle Scholar

[6] G. Dai. Three solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian. Nonlinear Anal., 70(10):3755-3760, 2009.Google Scholar

[7] X. Fan. Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl., 312(2):464-477, 2005.Google Scholar

[8] X. Fan, J. Shen, and D. Zhao. Sobolev embedding theorems for spaces W^{k},^{p(x)}(n). J. Math. Anal. Appl., 262(2):749-760, 2001.Google Scholar

[9] X. Fan and D. Zhao. On the spaces L^{p(x)}(Q) and W^{m,p(x)}(Q). J. Math. Anal. Appl., 263(2):424-446, 2001.Google Scholar

[10] O. Kovacik and J. Rakosnik. On spaces L^{p(x)} and W^{k,p(x)}. Czechoslovak Math. J., 41(116)(4):592-618, 1991.Google Scholar

[11] Q. Liu. Existence of three solutions for p(x)-Laplacian equations. Nonlinear Anal., 68(7):2119-2127, 2008.Google Scholar

[12] R. Mashiyev. Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent. Arab. J. Sci. Eng., 36:1559-1567, 2011.CrossrefGoogle Scholar

[13] M. Mihǎilescu. Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator. Nonlinear Anal., 67(5):1419-1425, 2007.Google Scholar

[14] M. Mihǎilescu and V. Rǎdulescu. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462(2073):2625-2641, 2006.Google Scholar

[15] B. Ricceri. A three critical points theorem revisited. Nonlinear Anal., 70(9):3084-3089, 2009.Google Scholar

[16] M. Růžička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.Google Scholar

[17] S. Samko. Denseness of C°°(R^{n}) in the generalized Sobolev spaces W^{M},P{X)(rN). In Direct and inverse problems of mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333-342. Kluwer Acad. Publ., Dordrecht, 2000. Google Scholar

## Comments (0)