Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Editor-in-Chief: Flaut, Cristina

1 Issue per year


IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Open Access
Online
ISSN
1844-0835
See all formats and pricing
More options …

Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation

Murat Advar
  • Corresponding author
  • Department of Mathematics, Izmir University of Economics, Sakarya Cad. No: 156, 35330 Balova, zmir, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Youssef N. Raffoul
Published Online: 2014-03-05 | DOI: https://doi.org/10.2478/auom-2013-0039

Abstract

We consider the system of Volterra integro-dynamic equations

and obtain necessary and sufficient conditions for the uniform stability of the zero solution employing the resolvent equation coupled with the variation of parameters formula. The resolvent equation that we use for the study of stability will have to be developed since it is unknown for time scales. At the end of the paper, we furnish an example in which we deploy an appropriate Lyapunov functional. In addition to generalization, the results of this paper provides improvements for its counterparts in integro-differential and integro-difference equations which are the most important particular cases of our equation.

Keywords: Lyapunov functional; New resolvent equation; Time scales; Uniform stability; Volterra

References

  • [1] Adivar, M., Principal matrix solutions and variation of parameters for Volterra integro-dynamic equations on time scales, Glasg. Math. J. 53 (2011) 463-480.Web of ScienceGoogle Scholar

  • [2] Adivar, M. and Raffoul, Y. N., Existence of resolvent for Volterra integral equations on time scales, Bull. of Aust. Math. Soc., 82(1), (2010), 139­155.Google Scholar

  • [3] Adivar, M. and Raffoul, Y. N., Existence results for periodic solutions of integro-dynamic equations on time scales, Ann. Mat. Pura Appl., 188 (4), 2009, 543-559.Google Scholar

  • [4] Adivar, M., Function bounds for solutions of Volterra integro-dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ., No. 7. (2010), pp. 1-22.Google Scholar

  • [5] Akin-Bohner, E. and Raffoul Y. N., Boundedness in functional dynamic equations on time scales, Adv. Difference Equ., Volume 2006, Art. ID 79689, Pages 1-18.Google Scholar

  • [6] Bohner, M. and Peterson, A., Dynamic Equations on Time Scales, An in­troduction with applications. Birkhauser Boston Inc., Boston, MA, 2001.Google Scholar

  • [7] Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhauser Boston Inc., Boston, MA, 2003.Google Scholar

  • [8] Eloe, P., Islam, M., and Zhang, B., Uniform asymptotic stability in linear Volterra integro-differential equations with applications to delay systems, Dynam. Systems Appl., 9 (2000), 331-344.Google Scholar

  • [9] Khandaker T. M., Raffoul Y. N, Stability properties of linear Volterra discrete systems with nonlinear perturbation, J. Difference Equ. Appl. 8 (2002), no. 10, 857-874.Google Scholar

  • [10] Kulik, T. and Tisdell, C. C., Volterra integral equations on time scales: Basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Difference Equ. 3 (2008), no. 1, 103-133.Google Scholar

  • [11] Miller, R. K., Asymptotic stability properties of Volterra integro- differential systems, J. Differential Equations, 10(1971), 485-506Google Scholar

  • [12] Miller, R. K., Nonlinear Volterra integral equations. W. A. Benjamin, Inc., Menlo Park, Calif., 1971.Google Scholar

  • [13] Tisdell, C. C. and Zaidi, A., Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an appli­cation to economic modelling. Nonlinear Anal., Vol. 68(2008), No. 11,. 3504-3524. Google Scholar

About the article

Published Online: 2014-03-05

Published in Print: 2013-11-01


Citation Information: Analele Universitatii "Ovidius" Constanta - Seria Matematica, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/auom-2013-0039.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in