Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Editor-in-Chief: Flaut, Cristina

1 Issue per year

IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Open Access
See all formats and pricing
More options …

Quasipolar Subrings of 3 x 3 Matrix Rings

Orhan Gurgun / Sait Halicioglu / Abdullah Harmanci
Published Online: 2014-03-05 | DOI: https://doi.org/10.2478/auom-2013-0048


An element a of a ring R is called quasipolar provided that there exists an idempotent p ∈ R such that p ∈ comm2(a), a + p ∈ U (R) and ap ∈ Bqnil. A ring R is quasipolar in case every element in R is quasipolar. In this paper, we determine conditions under which subrings of 3 x 3 matrix rings over local rings are quasipolar. Namely, if R. is a bleached local ring, then we prove that T3 (R) is quasipolar if and only if R is uniquely bleached. Furthermore, it is shown that Tn(R) is quasipolar if and only if Tn(R[[x]]) is quasipolar for any positive integer

Keywords: Quasipolar ring; local ring; 3 x 3 matrix ring


  • [1] H. Chen, Rings Related Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.Google Scholar

  • [2] H. Chen, Some strongly nil clean matrices over local rings, Bull. Korean Math. Soc. 48(4)(2011), 759-767.Web of ScienceCrossrefGoogle Scholar

  • [3] H. Chen, A note on strongly clean matrices, Int. Electron. J. Algebra 10(2011), 192-204.Google Scholar

  • [4] H. Chen, Strongly J-clean matrices over local rings, Comm. Algebra 40(4)(2012), 1352-1362.Web of ScienceCrossrefGoogle Scholar

  • [5] J, Cui and J. Chen, Strongly clean 3 x 3 matrices over a class of local rings, Nanjing Daxue Xuebao Shuxue Bannian Kan 27(1)(2010), 31-40.Google Scholar

  • [6] J, Cui and J. Chen, When is a 2 x 2 matrix ring over a commutative local ring quasipolar, Comm. Algebra 39(2011), 3212-3221.CrossrefWeb of ScienceGoogle Scholar

  • [7] J, Cui and J. Chen, Quasipolar triangular matrix rings over local rings, Comm. Algebra 40(2012), 784-794.CrossrefGoogle Scholar

  • [8] A. J. Diesl, Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, 2006.Google Scholar

  • [9] T. J. Dorsey, Cleanness and Strong Cleanness of Rings of Matrices, Ph.D. Thesis, University of California, Berkeley, 2006. Google Scholar

  • [10] R. E. Harte, On quasinilpotents in rings, Panam. Math. J. 1(1991), 10-16.Google Scholar

  • [11] J. J. Koliha and P. Patricio, Elements of rings with equal spectral idem- potents, J. Austral. Math. Soc. 72(2002), 137-152.Google Scholar

  • [12] W. K. Nicholson, Strongly clean rings and Fittings lemma, Comm. Alge­bra 27(1999), 3583-3592.Google Scholar

  • [13] Z. Wang and J. L. Chen, On two open problems about strongly clean rings, Bull. Austral. Math. Soc. 70(2004), 279-282.CrossrefGoogle Scholar

  • [14] Z. Ying and J. Chen, On quasipolar rings, Algebra Colloq. 4(2012), 683­692. Google Scholar

About the article

Published Online: 2014-03-05

Published in Print: 2013-11-01

Citation Information: Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 21, Issue 3, Pages 133–146, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/auom-2013-0048.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in