Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Editor-in-Chief: Flaut, Cristina

1 Issue per year


IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Open Access
Online
ISSN
1844-0835
See all formats and pricing
More options …

Coupled points in ordered generalized metric spaces and application to integro-dierential equations

Nguyen Van Luong / Nguyen Xuan Thuan
Published Online: 2014-03-05 | DOI: https://doi.org/10.2478/auom-2013-0050

Abstract

In this paper, we prove some coupled fixed point theorems for O-compatible mappings in partially ordered generalized metric spaces under certain conditions to extend and complement the recent fixed point theorems due to Bhaskar and Lakshmikantham [Nonlinear Anal. TMA 65 (2006) 1379 - 1393] and Berinde [Nonlinear Anal. TMA 74 (2011) 7347-7355]. We give some examples to illustrate our results. An application to integro-differential equations is also given.

Keywords: Coupled coincidence point; Coupled fixed point; Mixed monotone property; O-compatible mappings; integro-differential equations

References

  • [1] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal.87 (2008) 109-116.CrossrefGoogle Scholar

  • [2] A. Amini-Harandi , H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Analysis 72 (2010) 2238 -2242.Google Scholar

  • [3] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010) 17 pages. Article ID 621469.Google Scholar

  • [4] H. Aydi, B. Damjanovic, B. Samet, W. Shatanawi Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling, 54 (2011) 2443-2450.Web of ScienceGoogle Scholar

  • [5] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. TMA 74 (2011) 7347-7355.CrossrefGoogle Scholar

  • [6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially orderedmetric spaces and applications, Nonlinear Anal. 65 (2006) 1379­1393.Google Scholar

  • [7] A. Bica, S. Muresan , Periodic solutions for a delay integro-differential equations in biomathematics, RGMIA Res. Report Coll, 6 (2003), 755­761.Google Scholar

  • [8] A. Bica, S. Muresan, Applications of the Perovs fixed point theorem to delay integro-differential equations, Chap. 3 in Fixed Point Theory and Applications (Y.J. Cho, et al., Eds), Vol. 7, Nova Science Publishers Inc., New York, 2006.Google Scholar

  • [9] A. Bucur, L. Guran, A. Petrusel, Fixed points for multivalued operators on a set endowed with vector-valued metrics and applications, Fixed Point Theory, 10 (2009) 19-34.Google Scholar

  • [10] B. S. Choudhury, A. Kundu, A coupled coincidence point result in par­tially ordered metric spaces for compatible mappings, Nonlinear Analysis 73 (2010) 2524-2531.Google Scholar

  • [11] B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling, 54 (2011) 73-79.Web of ScienceGoogle Scholar

  • [12] L. Círíc, N. Cakic, M. Rajovic, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) 11 pages. Article ID 131294.Google Scholar

  • [13] A. D. Filip, A. Petrusel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory and Applications, Vol. 2010, Article ID 281381, 15 pp.Google Scholar

  • [14] J. Harjani, B. Lopez, K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760.Google Scholar

  • [15] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009) 3403 -3410.Google Scholar

  • [16] S. Hong, Fixed points of multivalued operators in ordered metric spaces with applications, Nonlinear Analysis, 72 (2010) 3929-3942.Google Scholar

  • [17] E. Karapnar, Couple fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 59 (2010), 3656-3668.Web of ScienceCrossrefGoogle Scholar

  • [18] V. Lakshmikantham, L. Círíc, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341- 4349.Google Scholar

  • [19] N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011) 983-992.Google Scholar

  • [20] N. V. Luong, N. X. Thuan. Coupled fixed point theorems for mixed mono­tone mappings and application to nonlinear integral equations. Comput. Math. Appl. 62 (2011) 4238 - 4248CrossrefGoogle Scholar

  • [21] J.J. Nieto, R.L. Pouso, R. Rodriguez - Lopez, Fixed point theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505 -2517.Web of ScienceGoogle Scholar

  • [22] J.J. Nieto, R. Rodriguez -López, Contractive mapping theorems in par­tially ordered sets and applications to ordinary differential equations, Or­der 22 (2005) 223 - 239.Google Scholar

  • [23] J.J. Nieto, R. Rodriguez -Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equa­tions, Acta Math. Sin. 23 (2007) 2205- 2212.CrossrefWeb of ScienceGoogle Scholar

  • [24] D. O’Regan, A. Petrusel, Fixed point theorems for generalized contrac­tions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008) 1241 -1252.Google Scholar

  • [25] D. O’Regan, R. Precup, Continuation theory for contractions on spaces with two vector-valued metrics, Applicable Analysis, 82 (2003), 131-144.Google Scholar

  • [26] D. O’Regan, N. Shahzad, R. P. Agarwal, Fixed point theory for gener­alized contractive maps on spaces with vector-valued metrics, in Fixed Point Theory and Applications. Vol. 6, pp. 143149, Nova Science, New York, NY, USA, 2007.Google Scholar

  • [27] A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411- 418.Web of ScienceGoogle Scholar

  • [28] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn., 2 (1964) 115134.Google Scholar

  • [29] A.I. Perov, A.V. Kibenko, On a general method to study the boundary value problems, Iz. Acad. Nauk., 30 (1966), 249-264.Google Scholar

  • [30] R. Precup, The role of matrices that are convergent to zero in the study of semi linear operator systems, Mathematical and Computer Modeling, 49 (2009) 703-708.Google Scholar

  • [31] M. Turinici, Finite-dimensional vector contractions and their fixed points, Studia Universitatis Babes Bolyai. Mathematica, 35 (2009), 30-42.Google Scholar

  • [32] I. A. Rus, Principles and applications of the fixed point theory, Dacia, Cluj-Napoca, Romania, 1979.Google Scholar

  • [33] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435 -1443.CrossrefGoogle Scholar

  • [34] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal 72 (2010) 4508-4517.Web of ScienceGoogle Scholar

  • [35] W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results. Comput. Math. Appl. 60 (2010) 2508-2515.CrossrefWeb of ScienceGoogle Scholar

  • [36] W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Mathematical and Computer Modelling. 55 (2012) 680-687.Google Scholar

  • [37] R. S. Varga, Matrix Iterative Analysis, vol. 27 of Springer Series in Com­putational Mathematics, Springer, Berlin, Germany, 2000.Google Scholar

  • [38] F. Voicu, Fixed-point theorems in vector metric spaces, Studia Universi­tatis Babes Bolyai. Mathematica, 36 (1991) 53-56 (French). Google Scholar

About the article

Published Online: 2014-03-05

Published in Print: 2013-11-01


Citation Information: Analele Universitatii "Ovidius" Constanta - Seria Matematica, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/auom-2013-0050.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Aftab Alam, Qamrul Haq Khan, and Mohammad Imdad
Journal of Function Spaces, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in