Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Editor-in-Chief: Flaut, Cristina

1 Issue per year

IMPACT FACTOR 2016: 0.422

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.966

Mathematical Citation Quotient (MCQ) 2016: 0.10

Open Access
See all formats and pricing
More options …

On Certain Proximities and Preorderings on the Transposition Hypergroups of Linear First-Order Partial Differential Operators

Jan Chvalina / Šárka Hošková-Mayerová
Published Online: 2014-12-10 | DOI: https://doi.org/10.2478/auom-2014-0008


The contribution aims to create hypergroups of linear first-order partial differential operators with proximities, one of which creates a tolerance semigroup on the power set of the mentioned differential operators. Constructions of investigated hypergroups are based on the so called “Ends-Lemma” applied on ordered groups of differnetial operators. Moreover, there is also obtained a regularly preordered transpositions hypergroup of considered partial differntial operators.

Keywords: Action of a hyperstructure on a set; semihypergroup; hypergroup; proximity space; transformation hypergroup; tolerance on a join space; regularly preordered hypergroup; ordered semigroup and group; partial differential operator


  • [1] Bakhshi, M., Borzooei, R. A.: Ordered polygroups, Ratio Math. 24(2013), 31–40.Google Scholar

  • [2] Bavel, Z., Grzymata-Busse, Soohong, K.: On the connectivity of the product of automata, Annales Societatis Mathematicae Polonae, Serie IV: Fun-damenta Informaticae VII.2 (1984), 225–266.Google Scholar

  • [3] Antampoufis, N., Spartalis, S., Vougiouklis, Th.: Fundamental relations in special extensions. In. 8th International Congress on AHA and Appl., Samothraki, Greece (2003), 81–90.Google Scholar

  • [4]čech;, E.: Topological Spaces, revised by Z. Frolík and M. Katětov, Aca-demia, Prague, 1966.Google Scholar

  • [5] Chajda, I.: Algebraic Theory of Tolerance Relations, The Palacky University, Olomouc, 1991.Google Scholar

  • [6] Chvalina, J.: Functional Graphs, Quasi-ordered Sets and Commutative Hypergroups, MU Brno, Czech, 1995.Google Scholar

  • [7] Chvalina, J.: Commutative hypergroups in the sense of Marthy, In. Proc. Summer School, Horní Lipová, Czech Republic (1994), 19–30.Google Scholar

  • [8] Chvalina, J., Chvalinová, L.: State hypergroups of automata, Acta Math. et Inf. Univ. Ostraviensis 4 (1996), 105–120.Google Scholar

  • [9] Chvalina, J., Chvalinová, L.: Modelling of join spaces by nth order linear ordinary differential operators, In: Proc. Aplimat, Bratislava (2005), 279– 285.Google Scholar

  • [10] Chvalina, J., Hošková, š: Join space of first-order linear partial differential operators with compatible proximity induced by a congruence on their group, In: Proc. Mathematical and Computer Modelling in Science and Engineering, Prague (2003), 166–170.Google Scholar

  • [11] Chvalina, J., Hošková, Š.: Transformation Tolerance Hypergroups, Thai Journal of Mathematics, 4(I)(2006), 63–72.Google Scholar

  • [12] Corsini, P.: Prolegomena of Hypergroup Theory, Aviani Editore, Trices-imo, 1993.Google Scholar

  • [13] Corsini, P., Leoreanu. V.: Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, Hardbound, 2003.Google Scholar

  • [14] CzáAszár, A.: Fundations of General Topology, A. P. Pergamon Press book, The Macmillan Co., New York, 1963.Google Scholar

  • [15] Cristea, I.: Several aspects on the hypergroups associated with n-ary relations, Analele St. Univ. Ovidius Constanťa, 17(2009), 99-110.Google Scholar

  • [16] Cristea, I., ştefănescu, M.: Binary relations and reduced hypergroups, Discrete Math. 308(2008), 3537-3544.Web of ScienceGoogle Scholar

  • [17] Cristea, I., ştefăKnescu, M.: Hypergroups and n-ary relations, European J. Combin. 31(2010), 780-789.CrossrefWeb of ScienceGoogle Scholar

  • [18] Cristea, I., ştefănescu, M., Angheluţă, C: About the fundamental relations defined on the hypergroupoids associated with binary relations, Eu-ropian J. Combin., 32(2011), 72-81.Google Scholar

  • [19] Davvaz, B., Leoreanu Fotea, V.: Hyperring theory and Applications, Hadronic Press, Palm Barbor, Fl. U.S.A, 2008.Google Scholar

  • [20] Davvaz, B.: Polygroup Theory and Related Systems, World Scientific, 2013.Google Scholar

  • [21] Flaut, C.: Division algebras with dimension 2*,t G N, Analele št. Univ. Ovidius Constanťa, 13(2)(2005), 31-38.Google Scholar

  • [22] Heidari, D., Davvaz, B.: On ordered hyperstructures. U.P.B. Sci. Bull., Series A, 73(2)(2011), 85-96.Google Scholar

  • [23] Hošková, š Chvalina, J., Račková, P.: Transposition hypergroups of Fred-holm integral operators and related hyperstructures, Journal of Basic Science 41(2005), 43-51.Google Scholar

  • [24] Hošková, š., Chvalina, J.: Discrete transformation hypergroups and transformation hypergroups with phase tolerance space, Discrete Math. 308(2008), 4133-4143.Web of ScienceGoogle Scholar

  • [25] Hošková, š.: Discrete Transformation Hypergroups, In: Proc. Aplimat, Bratislava (2005), 275-279.Google Scholar

  • [26] Hošková, š., Chvalina, J.: Multiautomata formed by first order partial differential operators, Aplimat-Journal of Applied Mathematics, 1(I)(2008), 423-439.Google Scholar

  • [27] Hörmander, L.: Analysis of Linear Partial Differential Operators I, II, Berlin, Springer I (1983).Google Scholar

  • [28] Jantosciak,J Transposition hypergroups: Noncommutative join spaces, J. Algebra 187(1997), 97-119.Google Scholar

  • [29] Massouros, G. G., Massouros, CH.G., Mittas I. D: Fortified Join hypergroups, Annalesmathmatiques Blaise Pascal, 3(II)(1996), 155-169.Google Scholar

  • [30]Novák, M.: The notions of subhyperstructure of “Ends-lemma”-based hy-perstructures, Aplimat-J. of Applied Math. 3(II)(2010), 237-247.Google Scholar

  • [31] Novák, M.: Some basic properties of EL-hyperstructures, European J. of Combinatorics 34(2013), 446-459.Web of ScienceCrossrefGoogle Scholar

  • [32] Novák, M.: EL-hyperstructures: an overview, Ratio Math. 23(2012), 65-80.Google Scholar

  • [33] Spartalis, S., Mamaloukas, C.: Hyperstructures associated with binary relations, Comput. Math. Appl. 51(2006), 41-50.Google Scholar

  • [34] Vougiouklis, T.: Hyperstructures and their Representations, Hadronic Press Monographs in Mathematics, Palm Harbor Florida 1994.Google Scholar

About the article

Received: 2013-04-01

Revised: 2013-05-01

Accepted: 2013-08-01

Published Online: 2014-12-10

Citation Information: Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 22, Issue 1, Pages 85–103, ISSN (Online) 1844-0835, DOI: https://doi.org/10.2478/auom-2014-0008.

Export Citation

© 2014 Jan Chvalina and Šárka Hošková-Mayerová. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in