Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of "Sapientia" Hungarian University of Transylvania

1 Issue per year

Open Access
See all formats and pricing
More options …

Ornamental plants as climatic indicators of arthropod vectors

Àkos Bede-Fazekas / Attila Jànos Tràjer
  • University of Pannonia, Department of Limnology, H-8200 Veszpr´em, Egyetem utca 10 / MTA-PE Limnoecology Research Group, H-8200 Veszpr´em, Egyetem utca 10
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-30 | DOI: https://doi.org/10.2478/ausae-2014-0002


The importance and risk of vector-borne diseases (e.g., leishmaniasis, West Nile Virus, Lyme borreliosis) is going to increase in the European temperate areas due to climate change. Our previous studies have shown that the potential distribution of Leishmania infantum and some Phlebotomus (sand fly) species - a parasite of leishmaniasis, and its vectors - may be expanded even to the southern coastline of the Baltic Sea by the end of the 21st century. The lowland areas of the Carpathian Basin and the main part of Hungary are projected to be suitable for the studied sand fly vectors in the near future. It is important to find some indicator plants to examine whether the sand flies are able to live in a certain climate at a certain time. We studied several Mediterranean and Sub-Mediterranean plant species, and we found that the aggregated distribution of three ligneous species (Juniperus oxycedrus L., Quercus ilex L. and Pinus brutia Ten.) shows high correlation with the union distribution of five sand flies (Phlebotomus ariasi Tonn., Ph. neglectus Tonn., Ph. perfiliewi Parrot, Ph. perniciosus Newst. and Ph. tobbi Adler, Theodor et Lourie). Since these Mediterranean species are highly tolerant of the edaphic characteristics of the planting site, they may prove to be good indicators. The present and upcoming climate of Hungary is seen to be suitable for the selected indicator plant species, and it draws attention to and verifies the potential of the expansion of sand flies, which has been proved by some recent observations of the vectors in Southern Hungary.

Keywords: climate change; indicator plant species; climate envelope model; vector-borne diseases; leishmaniasis; sand fly


  • [1] Alvar J., Canavate, C., Guti´errez-Solar, B., Jim´enez, M., Laguna, F., L´opez-V´elez, R., Molina, R., Moreno, J. (1997), Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin. Microbiol. Rev., 10(2): 298-319.Google Scholar

  • [2] Asp¨ock, H., Gerersdorfer, T., Formayer, H., Walochnik, J. (2008), Sandflies and sandfly-borne infections of humans in Central Europe in the light of climate change. Wiener klinische Wochenschrift, 120(4): 24-29.Google Scholar

  • [3] Bakkenes, M., Eickhout, B., Alkemade, R. (2006), Impacts of different climate stabilisation scenarios on plant species in Europe. Global Environmental Change, 16(1): 19-28.Google Scholar

  • [4] Bartholy, J., Pongr´acz, R., Gelyb´o, Gy. (2007), A 21. sz´azad v´eg´en v´arhat´o ´eghajlatv´altoz´as Magyarorsz´agon. F¨oldrajzi ´Ertes´ıt˝o, 56(3-4): 147-168.Google Scholar

  • [5] Bede-Fazekas, ´A. (2012), Melegig´enyes d´ıszf´ak telep´ıthet˝os´egi ter¨ulet´enek el˝orejelz´ese a 21. sz´azadra. Thesis, Corvinus University of Budapest, Faculty of Landscape Architecture, Budapest.Google Scholar

  • [6] Berry, P. M., Rounsevell, M. D. A., Harrison, P. A., Audsley, E. (2006), Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environmental Science & Policy, 9(2): 189-204.CrossrefGoogle Scholar

  • [7] Czink´oczky, A., Bede-Fazekas, ´A. (2012), Visualization of the climate change with the shift of the so-called Moesz-line. In: Buhmann, E., Ervin, S., Pietsch, M. (eds.): Peer Reviewed Proceedings of Digital Landscape Architecture 2012 at Anhalt University of Applied Sciences. Herbert Wichmann Verlag, Berlin, pp. 437-444.Google Scholar

  • [8] Cz´ucz, B. (2010), Az ´eghajlatv´altoz´as hazai term´eszetk¨ozeli ´el˝ohelyekre gyakorolt hat´asainak modellez´ese. PhD dissertation. Corvinus University of Budapest, Faculty of Horticultural Sciences. Budapest.Google Scholar

  • [9] De la Roque, S., Rioux, J. A., Slingenbergh, J. (2008), Climate change: Effects on animal disease systems and implications for surveillance and control. Revue Scientifique Et Technique. International Des Epizooties, 27(2): 339-354.Google Scholar

  • [10] Dormann, C. F. (2007), Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8(5): 387-397.CrossrefGoogle Scholar

  • [11] Elith, J., Leathwick, J. R. (2009), Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1): 677-697.CrossrefGoogle Scholar

  • [12] ENSEMBLES (2013), ENSEMBLES data archive. ensemblesrt3.dmi.dk. Last accessed: 2013.03.01.Google Scholar

  • [13] EUFORGEN (2009), Distribution map of Brutia pine (Pinus butia). www.euforgen.org/distributionmaps.html. Last accessed: 2013.01.01.Google Scholar

  • [14] FAO (1971): FAO-UNESCO Soil Map of the World, 1:500 000. Food and Agriculture Organization, United Nations, Rome and Paris.Google Scholar

  • [15] Farkas, R., T´anczos, B., Bongiorno, G., Maroli, M., Dereure, J., Ready, P. D. (2011), First surveys to investigate the presence of canine leishmaniasis and its phlebotomine vectors in Hungary. Vector Borne Zoonotic Dis, 11(7): 823-834.Google Scholar

  • [16] Fischer, D., Thomas, S. M., Beierkuhnlein, C. (2010), Temperaturederived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospatial Health, 5(1): 59-69.Google Scholar

  • [17] GISCO (2013), GISCO - Eurostat (European Commission). epp.eurostat.ec.europa.eu/portal/page/portal/gisco Geographical information maps/popups/references/ administrative units statistical units 1. Last accessed: 2013.01.01 Google Scholar

  • [18] Guisan, A., Zimmermann, N. E. (2000), Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3): 147-186.CrossrefGoogle Scholar

  • [19] Hammer, ˇR., Harper, D. A. T., Ryan, P. D. (2001), PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 9.Google Scholar

  • [20] Hanson, W. J. (1961) The Breeding Places of Phlebotomus in Panama (Diptera, Psychodidae). Annals of the Entomological Society of America, 54(3): 317-322.Google Scholar

  • [21] Harrison, P. A., Berry, P. M., Butt, N., New, M. (2006), Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environmental Science & Policy, 9(2): 116-128.CrossrefGoogle Scholar

  • [22] Hijmans, R. J., Graham, C. H. (2006), The ability of climate envelope models to predict the effect of climate change on species distributions.Google Scholar

  • Global Change Biology, 12(12): 2272-2281.Google Scholar

  • [23] Hughes, L. (2000), Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution, 15(2): 56-61.Google Scholar

  • [24] Ibánez, I., Clark, J. S., Dietze, M. C., Feeley, K., Hersh, M., Ladeau, S., Mcbride, A., Welch, N. E., Wolosin, M. S. (2006), Predicting Biodiversity Change: Outside the Climate Envelope, beyond the Species-Area Curve. Ecology, 87(8): 1896-1906.CrossrefGoogle Scholar

  • [25] Kennewick, W. A., Marfin, A. A. (2010), Emerging Vector-Borne Infectious Diseases What’s New in Medicine Workshop.Google Scholar

  • [26] Killick-Kendrick, R. (1990), Phlebotomine vectors of the leishmaniases: a review. Medical and Veterinary Entomolog, 4(1): 1-24.Google Scholar

  • [27] Killick-Kendrick, R., Killick-Kendrick, M. (1987), The laboratory colonization of Phlebotomus ariasi (Diptera, Psychodidae). Ann Parasitol Hum Comp, 62(4): 354-356.Google Scholar

  • [28] Kocsis, M., Hufnagel, L. (2011), Impacts of climate change on Lepidoptera species and communities. Applied Ecology and Environmental Research, 9(1): 43-72. Google Scholar

  • [29] Köhler, K., Stechele, M., Hetzel, U., Domingo, M. Sch¨onian, G., Zahner, H., Burkhardt, E. (2002), Cutaneous leishmaniosis in a horse in southern Germany caused by Leishmania infantum. Vet Parasito, 16(109): 9-17.Google Scholar

  • [30] Kovács-Láng, E., Kr¨oel-Dulay, Gy., Cz´ucz, B. (2008), Az ´eghajlatv´altoz´as hat´asai a term´eszetes ´el˝ovil´agra ´es teend˝oink a meg˝orz´es ´es kutat´as ter¨ulet´en. Term´eszetv´edelmi K¨ozlem´enyek, 14(1): 5-39.Google Scholar

  • [31] Ladányi M., Horv´ath, L. (2010), A review of the potential climate change impact on insect populations - general and agricultural aspects. Applied Ecology and Environmental Research, 8(2): 143-152.Google Scholar

  • [32] Leger, N., Depaquit, J., Fert´e, H., Rioux, J. A., Gantier, J. C., Gramiccia, M., Ludovisi, A., Michaelides, A., Christophi, N., Economides, P. (2000), Phlebotomine sandflies (Diptera: Psychodidae) of the isle of Cyprus. II - isolation and typing of Leishmania (Leishmania infantum Nicolle, 1908 (zymodeme MOM 1) from Phlebotomus (Larrouius) tobbi Adler and Theodor, 1930. Parasite, 7(2): 143-146.Google Scholar

  • [33] Lindgren, E., Naucke, T. (2006), Leishmaniasis: Influences of Climate and Climate Change Epidemiology, Ecology and Adaptation Measures. In: Menne, B, Ebi, K. L. (eds.): Climate change and adaptation strategies for human health. Steinkopff Verlag, Darmstadt, pp. 131-156.Google Scholar

  • [34] Lindgren, E., Naucke, T., Menne, B. (2008), Climate Variability And Visceral Leishmaniasis In Europe. WHO/TDR Working paper for the Scientific Working Group meeting on Leishmaniasis Research, convened by the Special Programme for Research and Training in Tropical Diseases, Geneva.Google Scholar

  • [35] Max-Planck-Institut f¨ur Meteorologie (2007), What will the climate in Europe look like in the middle of the 21st century? www.mpimet.mpg.de/en/news/press/faq-frequently-asked-questions/ what-will-the-climate-in-europe-look-like-in-the-middle-of-the-21stcentury. html. Last accessed: 2013.03.01.Google Scholar

  • [36] Meusel, H., J¨ager, E. J., Weinert, E. (1965), Vergleichende Chorologie der zentraleurop¨aischen Flora. Band I. (Text und Karten). Fischer- Verlag, Jena. Google Scholar

  • [37] Minter, D. M. (1989), The leishmaniasis. In: Geographical distribution of arthropod-borne diseases and their principal vectors. WHO, Geneva (document WHO/VBC/89.967)Google Scholar

  • [38] Naderer, T., Ellis, M. A., Sernee, M. F., De Souza, D. P., Curtis, J., Handman, E., McConville, M. J. (2006), Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. PNAS. 103(14): 5502-5507.Google Scholar

  • [39] Nakicenovic, N., Swart, R. (eds.) (2000), Emissions Scenarios. Cambridge University Press, Cambridge.Google Scholar

  • [40] Naucke, T. J. (2002), Leishmaniosis, a tropical disease and its vectors (Diptera Psychodidae, Phlebotominae) in Central Europe. Denisia. 6: 163-178.Google Scholar

  • [41] Pennisi, M. G. (2002), A high prevalence of feline leishmaniasis in southern Italy. In: Killick-Kendrick, R. (ed.): Canine leishmaniasis: moving towards a solution. Proceedings of the Second International Canine Leishmaniasis Forum Seville, Spain. Intervet International, Boxmeer, The Netherlands. pp. 9-48.Google Scholar

  • [42] Peterson, A. T. (2006), Ecological niche modeling and spatial patterns of diseases transmission. Emerging Infectious Diseases, 12(12): 1822-1826.CrossrefGoogle Scholar

  • [43] Peterson, A. T., Stewart, A., Mohamed, K. I., Ara´ujo, M. B. (2008), Shifting Global Invasive Potential of European Plants with Climate Change. PLoS ONE, 3(5): e2441.Google Scholar

  • [44] Pickett, S. T. A. (1989): Space-for-time substitution as an alternative to long-term studies. In: Likens, G. E. (ed.): Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York. pp. 110-135.Google Scholar

  • [45] Ready, P. D. (2010), Leishmaniasis emergence in Europe. Euro Surveill, 15(10): 19505.Google Scholar

  • [46] Roeckner, E., B¨auml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., Tompkins, A. (2003), The atmospheric general circulation model ECHAM 5. Part I: Model description. Max-Planck-Institut f¨ur Meteorologie, Hamburg. Google Scholar

  • [47] Roeckner E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., Schulzweida, U. (2004), The atmospheric general circulation model ECHAM 5. PART II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution. Max-Planck- Institut f¨ur Meteorologie, Hamburg.Google Scholar

  • [48] Rogers, D. J., Randolph, S. E. (2006), Climate Change and Vector-Borne Diseases. Advances in Parasitology, 62: 345-381.Google Scholar

  • [49] Sánchez, M., Herv´as, J., Chac´on, F., G´omez, J., Luicentes, J., Castrillo, J., P´erez, R., Pascual, F., Pascual, F. (2000), Evaluaci´on del gato com´un (Felis catus domesticus) como reservorio dela leishmaniosis enela cuenca mediterranea. Revista T´ecnica Veterinaria, Pequenos Animales. 24: 46-54Google Scholar

  • [50] Serra-Diaz, J. M., Ninyerola, M., Lloret, F. (2012), Coexistence of Abies alba (Mill.) - Fagus sylvatica (L.) and climate change impact in the Iberian Peninsula: A climatic-niche perspective approach. Flora - Morphology, Distribution, Functional Ecology of Plants, 207(1): 10-18.Google Scholar

  • [51] Shaw, S. E., Lerga, A., Williams, S. (2003), Review of exotic infectious diseases in small animals entering the United Kingdom from aboard diagnosed by PCR. Vet. Rec., 152(6): 176-177.Google Scholar

  • [52] Skov, F., Svenning, J. C. (2004), Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography, 27(3): 366-380.CrossrefGoogle Scholar

  • [53] Solano-Gallego, L., Fern´andez-Bellon, H., Serra, R., G´allego, M., Ramis, A., Fondevila, D., Ferrer, L. (2003), Cutaneous leishmaniosis in three horses in Spain. Equine Vet J., 35(3): 320-323.Google Scholar

  • [54] Solano-Gallego, L., Guadalupe, M., Koutinas, M., Cardoso, L., Pennisi, M. G., Ferrer, L., Bourdeau, P., Gaetano, O., Baneth, G. (2011), LeishVet guidelines for the practical management of canine leishmaniosis. Parasites & Vectors, 4: 86.CrossrefGoogle Scholar

  • [55] Thuiller, W., Ara´ujo, M. B., Lavorel, S. (2004), Do we need land-cover data to model species distributions in Europe? Journal of Biogeography, 31(3): 353-361.CrossrefGoogle Scholar

  • [56] Trotz-Williams, L. A., Trees, A. J. (2003): Systematic review of the distribution of the major vector-borne parasitic infections in dogs and cats in Europe. Veterinary Record, 152: 97-105. Google Scholar

  • [57] Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A., Akeroyd, J. R., Newton, M. E., Mill, R. R. (1964), Flora Europaea. - Cambridge University Press, Cambridge. VBORNET (2013), [58] VBORNET maps - Sandflies. ecdc.europa.eu/en/activities/diseaseprogrammes/ emerging and vector borne diseases/pages/ vbornet maps sandflies.aspx?MasterPage=1. Last accessed: 2013.01.01.Google Scholar

  • [59] WHO (1984): The leishmaniases: report of an expert committee. WHO Tech Rep Ser 701: 1-140. Google Scholar

About the article

Published Online: 2014-05-30

Published in Print: 2013-12-01

Citation Information: Acta Universitatis Sapientiae, Agriculture and Environment , Volume 5, Issue 1, Pages 19–39, ISSN (Online) 2068-2964, DOI: https://doi.org/10.2478/ausae-2014-0002.

Export Citation

© 2014. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in