Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of "Sapientia" Hungarian University of Transylvania

1 Issue per year

Open Access
See all formats and pricing
More options …

Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary)

Ádám Donkó / Gábor Zanathy / Zsolt Èros-Honti
  • Department of Botany and Soroksár Botanical Garden, Faculty of Horticulture, Corvinus University of Budapest
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Szabolcs Villangó / György Dénes Bisztray
Published Online: 2014-11-20 | DOI: https://doi.org/10.2478/ausae-2014-0008


The role of mycorrhizal fungi has special importance in the case of low soil moisture because the colonization of vine roots by mycorrhiza increases water and nutrient uptake and thus aids the avoidance of biotic and abiotic stresses of grape. Our aim was to investigate in the Eger wine region the changes of mycorrhizal colonization, water potential, and yield quality and quantity of grape roots at three altitudes, along a changing soil moist gradient. Our results show that the degree of mycorrhizal colonization is higher in drier areas, which supports the water and nutrient uptake of the host plant.

Keywords : mycorrhiza; grapevine; drought stress


  • [1] Auge, R. M. (2001), Water relations. drought and vesicular-arbusciilar mycorrhizal symbiosis, Mycorrhiza 11,3-42.Google Scholar

  • [2] Aguin. O., Mansilla. P., Vilarino, A., Sainz, M. (2004), Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Enology and Viticulture 55(1), 108-111.Google Scholar

  • [3] Baumgartner. K. (2003), Why and how. Encouraging beneficial AM fungi in vineyard soil, Practical Winery and Vineyard 14, 57-60.Google Scholar

  • [4] Bavaresco, L., Gatti, M., Zamboni, M., Fogher, C., Ferrari. F. (2010), Role of artificial mycorThization on iron uptake in calcareous soils, on stilbene root synthesis and in other physiological processes in grapevine. 33"* OW World Congress ofVine and Wine. General Assembty of The OW, 20-25 June 2010, Tbilisi. Georgia. 8.Google Scholar

  • [5] Benyei, F., Lörincz, A., Sz. Nagy, L. (1999), Szölötermeszies. Mezögazda Kiadö,Budapest.Google Scholar

  • [6] Cahural J. Y. (2004), Mycorrhizae in grapevine. A review. Progr& Agricole et Viticole, Montpellier 121(2), 31-36.Google Scholar

  • [7] Cheng. X., Baumgartner. K. (2005), Overlap of grapevine and cover crop roots enhances interactions among grapevines. cover crops, and arbuscular mycorrhizal fungi. In: Christensen. P., Smart, D. (eds.), Proceedings of the Soil Environment and Vine Mineral Symposium, 29-30 June 2004, San Diego, CA - American Society of Enolog}1 and Viticulture, Davis, CA, USA, 171-174.Google Scholar

  • [8] Davies. F. T., Potter, J. R., Linderman. R. G. (1992), Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. Plant Physiology 139(3), 289-294.Google Scholar

  • [9] DelTAmico. J., A. Torrecillas, P. Rodriguez. Morte, A.. Sanchez-Blanco. M. J. (2002), Responses of tomato plants associated with the arbuscular mycorrhizal fungus Gloumus darum during drought and recovery, Journal of Agricultural Science 138, 387-393.Google Scholar

  • [10] Donkö, A., Zanathy, G., Erös-Honti, Zs., Gäl. Cs., Göblyös, J., Bisztray. Gy. D. (2013), Telepiteskor vegzett mesterseges mikorrhizäläs eredmenyessege a Kunsägi borvideken.Kertgazdasäg 45(1), 20-28.Google Scholar

  • [11] Eibach. R.. Alleweidt. G., (1984). Einfliß der Wasserversorgung auf Wachstum Vitis 23, 11-20.Google Scholar

  • [12] Eissenstat. D. M. (1992). Costs and benefits of constructins roots of small diameter. Plant Nutrition 15(6-7), 763-782.CrossrefGoogle Scholar

  • [13] Francis. R.. Read, D. J. (1984), Direct transfer of carbon between plants connected by vesicular arbuscular mycorrhizal mycelium, Nature 307,53-56.Google Scholar

  • [14] Kounduras. S., Tsialtas, T., Zioziou. E., Nikolaou, N. (2008), Rootstock effects on the adaptive strategies of grape\Tne (Vitis \-inifera L. cv. Cabemet-Sauvignon) under contrasting water status: Leaf physiological and structural responses, Agriculture, Ecosystems and Environment 128, 86-96.Web of ScienceCrossrefGoogle Scholar

  • [15] Linderman. R. G., Davis. E. A. (2001), Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi, American Journal of Enology and Viticulture 52, 8-11.Google Scholar

  • [16] Marschner. H. (1997). Mineral nutrition of higher plants. Academic Press. London.Google Scholar

  • [17] McGomgle. T. P., Müler, M. H., Evans, D. G., Fairchild. G. L., Swan, J. A. (1990), A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115, 495-501. Google Scholar

  • [18] Menge. J. A., Raski, D. J., Lider, L. A., Johnson. E. L. V.. Jones, N. O., Kissler. J. J., Hemstreet. C. L. (1983), Interactions between mycorrhizal fungi. soil fumigation. and growth of grapes in California. American Journal of Enology and Viticulture 34,117-121.Google Scholar

  • [19] Meyer, A. H., Valentine, A. J., Botha. A., Archer, E., Louw. P. J. E. (2004), Young grapevine response and root colonisation following inoculation with arbuscular mycorrhizal fungi. South African Journal of Enology and Viticulture 25(1), 26-32.Google Scholar

  • [20] Nikolaou, N., Angelopoulos, K.. Karagiannidis. N. (2003), Effects of drought stress on mycoirhizal and non-mycoirhizal Cabemet Sauvignon grapevine, grafted onto various rootstocks. Experimental Agriculture 39, 241-252.Google Scholar

  • [21] Omar. A. E. K. (2007), Rooting and growth response of grapevine nurslings to inoculation with arbuscular mycorrhizal fungi and irrigation intervals. Journal of Applied Horticulture 9(2), 108-111.Google Scholar

  • [22] Pinkerton. J. N., Schreiner, R. P.. Ivors, K. L., Vasconcelos, M. C. (2004), Effects of Mesocriconema xenoplax on Vitis vinifera and associated mycorrhizal fungi. Journal of Nematology 36(3), 193-201.Google Scholar

  • [23] Poni, S., Bemizzoni. F., Civardi, S., Gatti. M., Porro. D.. Camin. F. (2009), Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split- root Lambrusco grapevines grown in Po Valley (Italy), Agriculture, Ecosystems and Environment 129,97-106.Web of ScienceCrossrefGoogle Scholar

  • [24] Scholander, P. F., Hammel. H. T.. Hemmingsen. E. A., Bradstreet. E. D. (1964), Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences, USA 52,119-125.CrossrefGoogle Scholar

  • [25] Schreiner, R. P. (2003), Mycorrhizal colonization of grapevine rootstocks under field conditions, American Journal of Enology and Viticulture 54(3), 143-149.Google Scholar

  • [26] Schreiner, R. P.. Linderman. R. G. (2005), Mycorrhizal colonization in dryland vineyards of the Willamette Valley, Oregon. Small Fruits Review 4(3), 41-55.CrossrefGoogle Scholar

  • [27] Schreiner, R. P. (2005), Mycorrhizas and mineral acquisition in grapevines. In: Christensen. L. P., Smart, D. R. (eds.), Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium. American Society for Enology and Viticulture, Davis, 49-60.Google Scholar

  • [28] Schreiner. R. P. (2005), Spatial and temporal Variation of roots, arbuscular mycorrhizal fungi. and plant and soil nutrients in a mature Pinot Noir (Vitis vinifera L.) vineyard in Oregon. Plant and Soil 276(1-2), 219-234.Google Scholar

  • [29] Schreiner. R. P., Tarara. J. M., Smithyman. R. P. (2007), Deficit irrigation promotes arbuscular colonization of fine roots by mycorrhizal fungi in grapevines (*Vitis vinifera* L.) in an arid climate. Mycorrhiza 17(7), 551-562.CrossrefWeb of ScienceGoogle Scholar

  • [30] Selosse, M.-A., Richard. F., He, X., Simard. S. W. (2006), Mycorrhizal networks: des liaisons dangereuses? Tree 21(11), 621-628.Google Scholar

  • [31] Smith, S. E., Gianinazzi-Pearson. V., Koide. R., Caimey. J. W. G. (1994), Nutrient transport in mycorrhizas: structure. physiology and consequences for efficiencv of the symbiosis. Plant Soil 159,103-113.Google Scholar

  • [32] Sweet, R. M., Schreiner. R. P. (2010), Alleyway cover crops have little influence on Pinot Noir grapevines (Vitis vinifera L.) in two Western Oregon vineyards. American Journal of Enology and Viticulture 61(2), 240-252.Google Scholar

  • [33] Valentine. A. J., Mortimer, P. E., Lintnaar, A., Borgo. R. (2006), Drought responses of arbuscular mycoirhizal grapevines, Symbiosis 41(3), 127-133.Google Scholar

  • [34] Wright, S. F.. Upadhyaya, A. (1998), A survey of soils for aggregate stability and glomalin, a glycoprotem produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198, 97-107. Google Scholar

About the article

Received: 2014-12-07

Revised: 2014-07-30

Accepted: 2014-12-08

Published Online: 2014-11-20

Published in Print: 2014-11-01

Citation Information: Acta Universitatis Sapientiae, Agriculture and Environment, Volume 6, Issue 1, Pages 13–23, ISSN (Online) 2068-2964, DOI: https://doi.org/10.2478/ausae-2014-0008.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sophie Trouvelot, Laurent Bonneau, Dirk Redecker, Diederik van Tuinen, Marielle Adrian, and Daniel Wipf
Agronomy for Sustainable Development, 2015, Volume 35, Number 4, Page 1449

Comments (0)

Please log in or register to comment.
Log in