Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of "Sapientia" Hungarian University of Transylvania

1 Issue per year

Open Access
Online
ISSN
2068-2964
See all formats and pricing
More options …

Elemental profile of edible mushrooms from a forest near a major Romanian city

Andreea R. Zsigmond
  • Corresponding author
  • Sapientia Hungarian University of Transylvania, Department of Environmental Science, 400193 Cluj-Napoca, Calea Turzii 4, Romania.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krisztina Varga
  • Sapientia Hungarian University of Transylvania, Department of Environmental Science, 400193 Cluj-Napoca, Calea Turzii 4, Romania.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sándor Harangi
  • University of Debrecen, Department of Inorganic and Analytical Chemistry, 4032, December, Egyetem tér 1., Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edina Baranyai
  • University of Debrecen, Department of Inorganic and Analytical Chemistry, 4032, December, Egyetem tér 1., Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ István Urák
  • Sapientia Hungarian University of Transylvania, Department of Environmental Science, 400193 Cluj-Napoca, Calea Turzii 4, Romania.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-22 | DOI: https://doi.org/10.1515/ausae-2015-0009

Abstract

We determined the elemental profile of 16 edible mushroom species from the Făget Forest, near Cluj-Napoca, and of 12 species from the Apuseni Mountains. One-way ANOVA showed no difference in the elemental content of mushrooms when the two regions were compared. Some species accumulated high amounts of trace elements, i.e. Boletus edulis (Ag, S, Zn), Macrolepiota procera (Cu), Lactarius volemus (Co), Russula emetica (Mn), Armillariella mellea, and Chantarellus cibarius (Cr). The cadmium content was the highest in the case of Leccinum scabrum and Boletus edulis. These two species presented elevated risk levels for all age-groups when they are consumed regularly.

Keywords: wild edible mushrooms; heavy metals; ICP-OES; trace elements

References

  • [1] Kalač, P. (2013), A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93, 209–18.Google Scholar

  • [2] Kalač, P. (2010), Trace element contents in European species of wild growing mushrooms: A review for the period 2000–2009, Food Chemistry 122, 2–15.Web of ScienceGoogle Scholar

  • [3] Kułdo, E., Jarzyńska, G., Gucia, M., Falandysz, J. (2014), Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chemical papers 68, 484–492.Web of ScienceGoogle Scholar

  • [4] Severoglu, Z., Sumer, S., Yalcin, B., Leblebici, Z., Aksoy, A. (2013), Trace metal levels in edible wild fungi. International Journal of Science and Technology 10, 295–304.Web of ScienceGoogle Scholar

  • [5] Giannacini, G., Betti, L., Palego, L., Mascia, G., Schmid, L., Lanza, M., Mela, A., Fabbrini, L., Biondi, L., Lucacchini, A. (2012), The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environmental Monitoring and Assessment 184, 7579–7595.Web of ScienceGoogle Scholar

  • [6] Sesli, E., Tuzen, M., Soylak, M. (2008), Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. Journal of Hazardous Materials 160, 462–567.Web of ScienceGoogle Scholar

  • [7] Kalač, P., Svoboda, L. (2000), A review of trace element concentrations in edible mushrooms. Food Chemistry 69, 273–281.CrossrefGoogle Scholar

  • [8] Radulescu, C., Stihi, C., Busuioc, G., Gheboianu, A. I., Popescu, I. V. (2010), Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bulletin of Environmental Contamination and Toxicology 84, 641–646.Web of ScienceGoogle Scholar

  • [9] Çayir, A., Coşkun, M., Coşkun, M. (2010), The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biological Trace Element Research 134, 212–219.Web of ScienceGoogle Scholar

  • [10] Chen, X. H., Zhou, H. B. Qiu, G. Z. (2009), Analysis of several heavy metals in wild edible mushrooms from regions of China. Bulletin of Environmental Contamination and Toxicology 83, 280–285.Web of ScienceGoogle Scholar

  • [11] Tüzen, M., Özdemir, M. Demirbaş, A. (1998), Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry 63, 247–251.Google Scholar

  • [12] Alonso, J., García, M. A., Pérez-López, M., Melgar, M. J. (2003), The concentration and bioaccumulation factor of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology 44, 180–188.Google Scholar

  • [13] Demirbaş, A. (2001), Concentration of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chemistry 75, 453–457.Google Scholar

  • [14] Busuioc, G., Elekes C. C., Stihi, C., Iordache S., Ciulei, S. C. (2011), The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environmental Science and Pollution Research 18, 890–896.CrossrefWeb of ScienceGoogle Scholar

  • [15] Falandysz, J., Drewnowska, M., Jarzyńska, G., Zhang, D., Zhang, Y., Wang, J. (2012), Mineral constituents in common chanterelles and soils collected from a high mountain and lowland sites in Poland. Journal of Mountain Science 9, 697–705.Web of ScienceCrossrefGoogle Scholar

  • [16] García, M. A., Alonso, J., Fernández, M. I., Melgar, M. J. (1998), Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology 34, 330–335.Google Scholar

  • [17] Krichner, G., Daillant, O. (1998), Accumulation of 210Pb and 226Ra and radioactive cesium by fungi. Science of the Total Environment 222, 63–70.Google Scholar

  • [18] Vetter, J. (2004), Arsenic content of some edible mushroom species. European Food Research and Technology 219, 71–74.Web of ScienceGoogle Scholar

  • [19] Cocchi, L., Vescovi, L., Petrini, L. E., Petrini, O. (2006), Heavy metals in edible mushrooms in Italy. Food Chemistry 98, 277–284.Google Scholar

  • [20] Petkovšek, S. A. S., Pokorny, B. (2013), Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Science of the Total Environment 443, 944–954.Web of ScienceGoogle Scholar

  • [21] Olumuyiwa, S. F., Oluwatoyin, O. A., Olanrewaja O., Steve R. A. (2007), Chemical composition and toxic trace element composition of some Nigerian edible wild mushroom. International Journal of Science and Technology 43, 24–29.Google Scholar

  • [22] Svoboda, L., Zimmermannivá, K., Kalač, P. (2000), Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. The Science of the Total Environment 246, 61–67.Google Scholar

  • [23] Schlecht, M. T., Säumel, I. (2015), Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environmental Pollution 204, 298–305.Web of ScienceGoogle Scholar

  • [24] Brânzan, T. (2013), Catalogul habitatelor, speciilor și siturilor Natura 2000 în România. Ed. Fundația Centrul Național pentru Dezvoltare Durabilă, București.Google Scholar

  • [25] Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., Canniatti-Brazaca, S. G. (2011), Heavy metals in vegetables and potential risk for human health. Scientia Agricola 69, 54–60.Web of ScienceGoogle Scholar

  • [26] US EPA (2013), Reference dose (RfD): Description and use in health risk assessments, Background Document 1A, Integrated risk information system (IRIS); United States Environmental Protection Agency: Washington, DC, 15 March 2013; http://wwwepa.gov/iris/rfd.htm.Google Scholar

  • [27] IRIS, USEPA, http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList

  • [28] EFSA Journal (2012), Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured. European Food Safety Authority Journal 10, 2579.Google Scholar

  • [29] Wang, X. M., Zhang, J., Li, T., Wang, Y. Z., Liu, H. G. (2015), Content and bioaccumulation of nine mineral elements in ten mushroom species of the genus Boletus. Journal of Analytical Methods in Chemistry 2015, 1–7.Google Scholar

About the article

Received: 2015-08-30

Revised: 2015-09-25

Accepted: 2015-09-28

Published Online: 2015-12-22

Published in Print: 2015-12-01


Citation Information: Acta Universitatis Sapientiae, Agriculture and Environment, Volume 7, Issue 1, Pages 98–107, ISSN (Online) 2068-2964, DOI: https://doi.org/10.1515/ausae-2015-0009.

Export Citation

© 2015 Andreea R. Zsigmond et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in