Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Universitatis Sapientiae, Informatica

The Journal of "Sapientia" Hungarian University of Transylvania

2 Issues per year

Open Access
Online
ISSN
2066-7760
See all formats and pricing
More options …

Efficient computing of n-dimensional simultaneous Diophantine approximation problems

Attila Kovács / Norbert Tihanyi
Published Online: 2014-05-30 | DOI: https://doi.org/10.2478/ausi-2014-0002

Abstract

In this paper we consider two algorithmic problems of simultaneous Diophantine approximations. The first algorithm produces a full solution set for approximating an irrational number with rationals with common denominators from a given interval. The second one aims at finding as many simultaneous solutions as possible in a given time unit. All the presented algorithms are implemented, tested and the PariGP version made publicly available.

Keywords : Diophantine approximation

References

  • [1] F. Armknecht, C. Elsner, M. Schmidt, Using the Inhomogeneous Simultaneous Approximation Problem for Cryptographic Design. AFRICACRYPT, 2011, pp. 242-259. →18Google Scholar

  • [2] A. Frank, É. Tardos, An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica, 7, 1 (1987) 49-66. →18CrossrefGoogle Scholar

  • [3] A. Y. Khinchin, Continued Fractions, Translated from the third (1961) Russian edition, Reprint of the 1964 translation, Dover, Mineola, NY, 1997. →20Google Scholar

  • [4] Sh. Kim, S. Östlund, Simultaneous rational approximations in the study of dynamical systems, Phys. Rev. A, 34, 4 (1986) 3426-3434. →18CrossrefGoogle Scholar

  • [5] C. Kimberling, Best lower and upper approximates to irrational numbers, Elem. Math., 52, 3 (1997) 122-126. →20CrossrefGoogle Scholar

  • [6] T. Kotnik, Computational Estimation of the order of ζ(1/2+it), Math. Comp., 73, 246 (2004) 949-956. →33Google Scholar

  • [7] J. C. Lagarias, Best simultaneous Diophantine approximations I., Growth rates of best approximation denominators, Trans. Am. Math. Soc., 272, 2 (1982) 545-554. →18Google Scholar

  • [8] J. C. Lagarias, Best simultaneous Diophantine approximations II., Behavior of consecutive best approximations, Pacific J. Math., 102, 1 (1982) 61-88. →18Google Scholar

  • [9] J. C. Lagarias, The computational complexity of simultaneous Diophantine approximation problems, SIAM J. Computing 14, 1 (1985) 196-209. →18CrossrefGoogle Scholar

  • [10] A. K. Lenstra, H. W. Lenstra Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261, 4 (1982) 515-534. →18, 21Google Scholar

  • [11] A. M. Odlyzko, The 1020-th zero of the Riemann zeta function and 175 million of its neighbors, 1992 (unpublished) →33Google Scholar

  • [12] V. T. Sós, G. Szekeres, Rational approximation vectors, Acta Arithm., 49, 3 (1988) 255-261. →18 Google Scholar

About the article

Received: 2013-04-10

Revised: 2013-06-08

Published Online: 2014-05-30

Published in Print: 2013-07-01


Citation Information: Acta Universitatis Sapientiae, Informatica, Volume 5, Issue 1, Pages 16–34, ISSN (Online) 2066-7760, DOI: https://doi.org/10.2478/ausi-2014-0002.

Export Citation

© 2014. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in