Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year

IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
See all formats and pricing
More options …

Sound absorption property of nonwoven based composites

Eulalia Gliścińska
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 90-924 Łódź, ul. Żeromskiego 116, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Michalak
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 90-924 Łódź, ul. Żeromskiego 116, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Izabella Krucińska
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 90-924 Łódź, ul. Żeromskiego 116, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-31 | DOI: https://doi.org/10.2478/v10304-012-0036-2


Sound absorbing materials used to provide optimal conditions in rooms can be applied in the form of textiles with a special structure such as nonwovens or fibre-containing composites. Nonwovens can be successfully used to make thermoplastic composites by thermal pressing. This paper presents the comparison of the sound absorbing properties of needled nonwovens and composites made from them. Composites with various densities can be made of nonwovens with various percentage contents of filling and matrix fibres. The sound absorption by composites with similar thickness, about several millimetres, is slightly lower than that by the laminar nonwoven packs used for their making. The optimal content of the filling fibres in the composite, when its sound absorption coefficient reaches the highest values, is at the level of 10 wt.%. With the increase in the content of filling fibres the composite density decreases. In the case of the composite with 10 wt.% of filling fibres, its density is the highest among the composites investigated, and the increase in absorption of high-frequency sounds is the highest. Imparting a relief with a protrusion diameter over 10 mm to the composite surface, we can increase the sound absorption of that composite.

Keywords: Fibre; composite; sound absorption; needled nonwoven; thermoplastic matrix

  • [1] Vinson, J.R., & Sierakowski, R.L. (1986). The behaviour of structures composed of composite materials. Martinus Nijhoff Publishers. Dordrecht. Google Scholar

  • [2] Turkiewicz, J., & Sikora, J. (2011). Investigations of the sound absorption coefficient of composite materials. Mechanics Technical Transactions, 16, 113-122. Google Scholar

  • [3] Lauke, B., Bunzel, U., Schneider, K. (1998). Effect of hybrid yarn structure on the delamination behaviour of thermoplastic composites. Composites: Part A, Vol. 29A, 1397-1409. CrossrefGoogle Scholar

  • [4] Krucińska, I., Klata, E., Ankudowicz, W., Dopierała, H. (2001). Influence of the structure of hybrid yarns on the mechanical properties of thermoplastic composites. Fibres and Textiles in Eastern Europe, Vol. 9, No. 2(33), 38-41. Google Scholar

  • [5] Liu, Y., Hu, H. (2010). Sound absorption behaviour of knitted spacer fabrics. Textile Research Journal, Vol. 80, No. 18, 1949-1957. Google Scholar

  • [6] Parikh, D.V., Chen, Y., Sun, L. (2006). Reducing automotive interior noise with natural fiber nonwoven floor covering systems. Textile Research Journal, Vol. 76, No. 11, 813-820. CrossrefGoogle Scholar

  • [7] Öztürk, M. K., Nergis, B., Candan, C. (2011). Development of a spacer knitted fabric for sound absorbent acoustic panels. International Congress of Innovative Textiles, ICONTEX2011, Istanbul, 347-353. Google Scholar

  • [8] Jiang, N., Chen, J.Y., Parikh, D.V. (2009). Acoustical evaluation of carbonized and activated cotton nonwovens. Bioresource Technology, 100, 6533-6536. PubMedCrossrefWeb of ScienceGoogle Scholar

  • [9] Kyoichi, W., Yoshiaki, M., Kouichi, N., Hiroshi, S. (1999). Development of high-performance all-polyester soundabsorbing materials. JSAE Review, 20, 357-362. Google Scholar

  • [10] Na, Y., Lancaster, J., Casali, J. (2007). Sound absorption coefficient of micro-fiber fabrics by reverberation room method. Textile Research Journal, Vol. 77, No. 5, 330-335. CrossrefWeb of ScienceGoogle Scholar

  • [11] Mirjalili, S. A., Mohammad-Shahi, M. (2012). Investigation on the acoustic characteristics of multi-layer nonwoven structures. Part 1 – Multi-layer nonwoven structures with the simple configuration. Fibres and Textiles in Eastern Europe, Vol. 20, 3(92), 73-77. Google Scholar

  • [12] Jia Horng, L., You Cheng, L., Chao Chiung, H., Chia Chang, L., Chin Mei, L., Ching Wen, L. (2010). Manufacturing process of sound absorption composite planks. Advanced Materials Research, Vol. 97-101, 1801-1804. Google Scholar

  • [13] Kalinova, K., Sanetrnik, F., Jirsak, O., Mares, L. (2006). Layered sound absorptive non-woven fabric. WO 2006/108363 A2. Google Scholar

  • [14] Maderuelo-Sanz, R., Nadal-Gisbert, A. V., Crespo-Amorós, J. E., Parres-García, F. (2012). A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Applied Acoustics, 73, 402-408. Web of ScienceGoogle Scholar

  • [15] Ersoy, S., Küçük, H. (2009). Investigation of industrial tealeaf- fibre waste material for its sound absorption properties. Applied Acoustics, 70, 215-220. Web of ScienceGoogle Scholar

  • [16] Narendra, R., Yiqi, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, Vol. 23, No. 1, 22-27. Google Scholar

  • [17] Fatima, S., Mohanty, A.R. (2011). Acoustical and fireretardant properties of jute composite materials. Applied Acoustics, 72, 108-114. Web of ScienceGoogle Scholar

  • [18] Dakai, C., Jing, L., Jie, R. (2010). Study on sound absorption property of ramie fiber reinforced poly(L-lactic acid) composites: Morphology and properties. Composites: Part A, 41, 1012-1018. Google Scholar

  • [19] El Hajj, N., Mboumba-Mamboundou, B., Dheilly, R.-M., Aboura, Z. (2011). Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows. Industrial Crops and Products, 34, 921-928. CrossrefWeb of ScienceGoogle Scholar

  • [20] Süvari, F., Ulcay, Y. (2011). Experimental investigation into sound absorptive properties of PET/PP high loft nonwovens. International Congress of Innovative Textiles, ICONTEX2011, Istanbul, 368-373. Google Scholar

  • [21] Avine, O., Khoddami, A. (2009). Overview of poly(lactic acid) (PLA) fibre. Fibre Chemistry, Vol. 41, No. 6, 391-401. Web of ScienceGoogle Scholar

  • [22] Koizumi, T., Tsujiuchi, N., Adachi, A. (2002). The development of sound absorbing materials using natural bamboo fibers, high performance. WIT Press, 157-166. Google Scholar

  • [23] Küçük, M., Korkmaz, Y. (2012). The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites. Textile Research Journal, 82(20), 2043-2053. Web of ScienceGoogle Scholar

About the article

Published Online: 2013-12-31

Citation Information: Autex Research Journal, Volume 13, Issue 4, Pages 150–155, ISSN (Print) 1470-9589, DOI: https://doi.org/10.2478/v10304-012-0036-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Eulalia Gliścińska, Dominik Sankowski, Izabella Krucińska, Jarosław Gocławski, Marina Michalak, Zdzisława Rowińska, and Joanna Sekulska-Nalewajko
Polymer Testing, 2017

Comments (0)

Please log in or register to comment.
Log in