Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year


IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
Online
ISSN
2300-0929
See all formats and pricing
More options …

An analysis of effective thermal conductivity of heterogeneous materials

Guocheng Zhu
  • Department of textile material engineering, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dana Kremenakova
  • Department of textile material engineering, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Wang
  • Department of textile material engineering, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiri Militky
  • Department of textile material engineering, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Funda Buyuk Mazari
  • Department of clothing technology, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-14 | DOI: https://doi.org/10.2478/v10304-012-0044-2

Abstract

Effective thermal conductivity (ETC) is a very important index for evaluating the thermal property of heterogeneous materials, which include more than two different kinds of materials. Several analytical models were proposed for predicting the ETC of heterogeneous materials, but in some cases, these models cannot provide very accurate predictions. In this work, several analytical models and numerical simulations were studied in order to investigate the differences among them. In addition, some factors which would influence the ETC of heterogeneous materials were investigated by numerical simulation. The results demonstrated that the numerical simulation can provide very accurate prediction, indicated that different analytical models should be selected to predict specific problems based on their assumptions, and suggested that more variables need to be considered in order to improve these analytical models, such as inclusion shape, inclusion size, distribution of inclusions and contact area. Besides, numerical method could be an effective and reliable way to obtain the ETC of heterogeneous materials with any kind of complicated structures.

Keywords: Effective thermal conductivity; heterogeneous material; analytical model; numerical method

References

  • [1] Cengel, Y. A., (2003). Heat transfer: A practical approach. (2nd ed). New York, McGraw-Hill. Google Scholar

  • [2] Ismail, M. I.; Ammar, A. S. A.; Elokeily, M. (1988). Heat Transfer through Textile Fabrics: Mathematical Model. Appl Math Model,12 (4), 434-440. CrossrefGoogle Scholar

  • 3] Bhattacharjee, D.; Kothari, V. K. (2009). Heat transfer through woven textiles. Int J Heat Mass Tran,52 (7–8), 2155-2160.CrossrefWeb of ScienceGoogle Scholar

  • [4] Ymashita Yoshihiro; Yamda Hiroakia; Hajimeb, M. (2008). Effective Thermal Conductivity of Plain Weave Fabric and its Composite Material Made from High Strength Fibers Journal of Textile Engineering,54 (4), 111-119.CrossrefGoogle Scholar

  • [5] Zhu, F.; Li, K. (2010). Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method. Int J Thermophys,31 (3), 612-619.Web of ScienceCrossrefGoogle Scholar

  • [6] Das, A.; Alagirusamy, R.; Kumar, P. (2011). Study of heat transfer through multilayer clothing assemblies: A theoretical prediction. Autex Res J,11 (2), 54-60.Google Scholar

  • [7] Matusiak, M. (2012). Modelling the thermal resistance of woven fabrics. J Text I,104 (4), 426-437.Google Scholar

  • [8] Taylor, R. E.; Jortner, J.; Groot, H. (1985). Thermal- Diffusivity of Fiber-Reinforced Composites Using the Laser Flash Technique. Carbon,23 (2), 215-222.CrossrefGoogle Scholar

  • [9] Johnson, L. F.; Hasselman, D. P. H.; Chyung, K. (1987). Effect of Silicon-Carbide Fiber or Whisker Reinforcement on the Thermal-Diffusivity Conductivity of an Osumilite Glass-Ceramic. J Am Ceram Soc,70 (6), C135-C138.Google Scholar

  • [10] Zhang, X.; Fujiwara, S.; Fujii, M. (2000). Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int J Thermophys,21 (4), 965-980.CrossrefGoogle Scholar

  • [11] Bogaty, H.; Hollies, N. R. S.; Harris, M. (1957). Some Thermal Properties of Fabrics: Part I: The Effect of Fiber Arrangement. Text Res J,27 (6), 445-449.CrossrefGoogle Scholar

  • [12] Al-Sulaiman, F. A.; Al-Nassar, Y. N.; Mokheimer, E. M. A. (2006). Numerical prediction of the thermal conductivity of fibers. Heat Mass Transfer,42 (5), 449-461.Google Scholar

  • [13] Jiri Militky; Kremenakova, D. In Prediction of fabrics thermal conductivity, 5th International textile, clothing & design conference – Magic World of Textiles, Dubrovnik, Croatia, Dubrovnik, Croatia, 2010; pp 1-6.Google Scholar

  • [14] Eucken, A. (1940). Allgemeine Gesetzmabigkeiten fur das Warmeleitvermogen verschiedener Stoffarten und Aggregatzustande. Forschung Gabiete Ingenieur,11 (1), 6-20.Google Scholar

  • [15] Maxwell, J. C., (1954). A Treatise on Electricity and Magnetism. (3rd ed). New York, Dover Publications Inc.Google Scholar

  • [16] Wang, J.; Carson, J. K.; North, M. F., et al. (2008). A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int J Heat Mass Tran,51 (9-10), 2389-2397.Web of ScienceCrossrefGoogle Scholar

  • [17] Levy, F. L. (1981). A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int. J. Refrigeration, 4 (4), 223-225.CrossrefGoogle Scholar

  • [18] Carson, J. K.; Lovatt, S. J.; Tanner, D. J., et al. (2003). An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations. Int J Refrig,26 (8), 873-880.CrossrefGoogle Scholar

  • [19] Dasgupta, A.; Agarwal, R. K.; Bhandarkar, S. M. (1996). Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties. Compos Sci Technol,56 (3), 209-223.CrossrefGoogle Scholar

  • [20] Krach, A.; Advani, S. G. (1996). Influence of void shape, void volume and matrix anisotropy on effective thermal conductivity of a three-phase composite. J Compos Mater,30 (8), 933-946.CrossrefGoogle Scholar

  • [21] Francl, J.; Kingery, W. D. (1954). Thermal Conductivity:IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity. J Am Ceram Soc,37 (2), 99-107. CrossrefGoogle Scholar

About the article

Published Online: 2014-03-14


Citation Information: Autex Research Journal, Volume 14, Issue 1, Pages 14–21, ISSN (Print) 1470-9589, DOI: https://doi.org/10.2478/v10304-012-0044-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Gannoum, P. Xydas, K. Triantafyllidis, T.D. Karapantsios, and M. Kostoglou
International Journal of Heat and Mass Transfer, 2018, Volume 116, Page 1064
[2]
Muhammad Owais Raza Siddiqui, Danmei Sun, and Ian B Butler
Journal of Industrial Textiles, 2017, Page 152808371772591
[3]
Mohanapriya Venkataraman, Rajesh Mishra, Jiri Militky, and B. K. Behera
The Journal of The Textile Institute, 2017, Volume 108, Number 8, Page 1442

Comments (0)

Please log in or register to comment.
Log in