Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year

IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
See all formats and pricing
More options …

Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat

Mikelis Kirpluks / Ugis Cabulis / Viesturs Zeltins / Laura Stiebra / Andris Avots
Published Online: 2014-12-20 | DOI: https://doi.org/10.2478/aut-2014-0026


One of the biggest disadvantages of rigid polyurethane (PU) foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ), which at 18-28 mW/(m•K) is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR) are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG) into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K). This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP) as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.

Keywords: Polyurethane foam; intumescent textile; flammability; thermal conductivity; sustainable materials


  • [1] Silva M.C., Takahashi J.A., Chaussy D., Belgacem M.N., Silva G.G. (2010). Composites of rigid polyurethane foam and cellulose residue. Journal of Applied Polymer Science, 117, 3665-3672.Google Scholar

  • [2] Stirna U., Beverte I., Yakushin V., Cabulis U. (2011). Mechanical properties of rigid polyurethane foams at room and cryogenic temperatures. Journal of Cellular Plastics, 47(4), 337-355.CrossrefGoogle Scholar

  • [3] Zatorski W., Brzozowski Z.K., Kolbrecki A. (2008). New developments in chemical modification of fire-safe rigid polyurethane foams. Polymer Degradation and Stability, 93(11), 2071-2076.Google Scholar

  • [4] Zhang L., Zhang M., Yonghong Z., Hu L. (2013). The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polymer Degradation and Stability, 98(12), 2784-2794.Google Scholar

  • [5] Cullis C.F.,Hirschler M.M. (1981). The Combustion of Organic Polymers. Clarendon Press (Oxford). Google Scholar

  • [6] Weil E.D., Ravey M., Gertner D. (1996). Recent progress in flame retardancy of polyurethane foams. In Proceedings of the Conference on Recent Advances in Flame Retardancy of Polymeric Materials, Stamford, CT, 191-200.Google Scholar

  • [7] Czuprynski B., Paciorek-Sadowska J., Liszkowska J. (2002). The effect of tri(1-chloro-3-etoxy-propane-2-ol) borate on the properties of rigid polyurethanepolyisocyanurate foams. Polimery, 10, 727.Google Scholar

  • [8] Hill K. (2000). Fats and oils as oleochemical raw materials. Pure and Applied Chemistry, 72(7), 1255-1264.Google Scholar

  • [9] Montero de Espinosa L., Meier M.A.R. (2011). Plant oils: the perfect renewable resource for polymer science. European Polymer Journal, 47(5), 837-852.CrossrefWeb of ScienceGoogle Scholar

  • [10] Williams C.K., Hillmyer M.A. (2008). Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polymer Reviews, 48(1), 1-10.Web of ScienceCrossrefGoogle Scholar

  • [11] Gandini A. (2008). Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules, 41(24), 9491-9504.Web of ScienceCrossrefGoogle Scholar

  • [12] Van Haveren J., Scott E.L., Sanders J. (2008). Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2(1), 41-57.Web of ScienceGoogle Scholar

  • [13] Cabulis U., Kirpluks M., Stirna U., Lopez M.J., Vargas- Garcia M.C., et al. (2012). Rigid polyurethane foams obtained from tall oil and filled with natural fibers: Application as a support for immobilization of lignindegrading microorganisms. Journal of Cellular Plastics, 48(6), 500-515.CrossrefWeb of ScienceGoogle Scholar

  • [14] Feske E.F., Brown W.R. (2002). Flame Retardant Pentane Blown Polyisocyanurate Foams for Roofing. In Proceedings of Polyurethanes EXPO 2002, Salt Lake City, UT, 32-40.Google Scholar

  • [15] Levchik S.V., Weil E.D. (2004). Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature. Polymer International, 53, 1585-1610.Google Scholar

  • [16] Modesti M., Lorenzetti A., Simioni F., Checchin M. (2001). Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers. Polymer Degradation and Stability, 74(3), 475-479. Google Scholar

  • [17] Camino G., Luda M.P., Costa L. (1993). In Proceedings of Chemical industry and environment. Barcelona, Universitat Politecnica de Catalunja, 221-227.Google Scholar

  • [18] Fire classification of construction products and building elements - Part 1: Classification using test data from reaction to fire tests, EN 13501-1+A1Google Scholar

  • [19] Modesti M., Lorenzetti A., Simioni F., Camino G. (2002). Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polymer Degradation and Stability, 77 (2), 195-202.Google Scholar

  • [20] Xie R.C., Qu B.J. (2001). Expandable graphite systems for halogen-free flame retardant of polyolefins. I. Flammability characterization and synergistic effect. Journal of Applied Polymer Science, 80(8), 1181-1189.CrossrefGoogle Scholar

  • [21] Duquesne S., Delobel R., Michel L.B., Camino G. (2002). A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane. Polymer Degradation and Stability, 77(2), 333-344.Google Scholar

  • [22] Gao L., Zheng G., Zhou Y., Hu L., Feng G., Zhang M. (2014). Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polymer Degradation and Stability, 101, 92-101.Google Scholar

  • [23] Feng F., Qian L. (2013). The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polymer Composites, 35(2), 301-309. Web of ScienceGoogle Scholar

  • [24] Meng X.Y., Ye L., Zhang X.G., Tang J.H., Ji X., Li Z.M. (2009). Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams. Journal of Applied Polymer Science, 114(2), 853-863.Web of ScienceCrossrefGoogle Scholar

  • [25] Vanspeybroeck R., Van Hess P., Vandevelde P. (1992). Combustion behavior of polyurethane flexible foams under cone calorimetry test conditions. Cellular Polymers, 11(2), 96-117.Google Scholar

  • [26] Price D., Liu Y., Hull T.R., Milnes G.J., Kandola B.K., Horrocks A.R. (2002). Burning behaviour of foam/cotton fabric combinations in the cone calorimeter. Polymer Degradation and Stability, 77(2), 213-220.Google Scholar

  • [27] Kotresh T.M., Indushekar R., Subbulakshmi M.S., Vijayalakshmi S.N., Krishna Prasad A.S., Gaurav K. (2005). Evaluation of foam/single and multiple layer Nomex fabric combinations in the cone calorimeter. Polymer Testing, 24(5), 607-612.CrossrefGoogle Scholar

  • [28] Lifeng Wu, Gemert J., Camargo R.E. (2012), Rheology Study in Polyurethane Rigid Foams. Huntsman International Technical presentations Web site: http://www. huntsman.com/polyurethanes/a/Products/Technical%20 presentations%20overviewGoogle Scholar

  • [29] Prociak A. (Ed.), Rokicki G.. (Ed.), Ryszkowska J. (Ed.). (2014). Materialy poliuretanowe. Wydawnictwo Naukowe PWN SA (Warsaw).Google Scholar

  • [30] Levchik S.V., Weil E.D. (2004), Review Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature. Polymer International, 53,1585-1610 Google Scholar

About the article

Published Online: 2014-12-20

Published in Print: 2014-12-01

Citation Information: Autex Research Journal, Volume 14, Issue 4, Pages 259–269, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2014-0026.

Export Citation

© Autex Research Journal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kamila Mizera, Mikelis Kirpluks, Ugis Cabulis, Milena Leszczyńska, Marzena Półka, and Joanna Ryszkowska
Industrial Crops and Products, 2018, Volume 113, Page 98
Yintao Wang, Feng Wang, Quanxiao Dong, Mingchen Xie, Peng Liu, Yanfen Ding, Shimin Zhang, Mingshu Yang, and Guoqiang Zheng
Polymer Degradation and Stability, 2017
Aleksander Hejna, Paulina Kosmela, Mikelis Kirpluks, Ugis Cabulis, Marek Klein, Józef Haponiuk, and Łukasz Piszczyk
Journal of Polymers and the Environment, 2017
Maryam Sadat Mirmoeini, Mir Mohammad Alavi Nikje, Mona Rasouli-Saniabadi, and Saeed Taghvaei-Ganjali
Macromolecular Symposia, 2017, Volume 373, Number 1, Page 1600101
Edgars Labans, Kaspars Kalnins, and Chiara Bisagni
Journal of Sandwich Structures & Materials, 2017, Page 109963621769958
Labans Edgars, Zudrags Kaspars, and Kalnins Kaspars
Procedia Engineering, 2017, Volume 172, Page 628
Maria Kurańska, Aleksander Prociak, Ugis Cabulis, Mikelis Kirpluks, Joanna Ryszkowska, and Monika Auguścik
Industrial Crops and Products, 2017, Volume 95, Page 316
Aleksander Hejna, Mikelis Kirpluks, Paulina Kosmela, Ugis Cabulis, Józef Haponiuk, and Łukasz Piszczyk
Industrial Crops and Products, 2017, Volume 95, Page 113
Maria Kurańska, Ugis Cabulis, Monika Auguścik, Aleksander Prociak, Joanna Ryszkowska, and Mikelis Kirpluks
Polymer Degradation and Stability, 2016, Volume 127, Page 11

Comments (0)

Please log in or register to comment.
Log in