Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year

IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
See all formats and pricing
More options …

Skin Cancer and UV Protection

Anita Tarbuk
  • Corresponding author
  • University of Zagreb Faculty of Textile Technology, Department for Textile Chemistry and Ecology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana Marija Grancarić
  • University of Zagreb Faculty of Textile Technology, Department for Textile Chemistry and Ecology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirna Šitum
  • University Hospital “Sestre milosrdnice”, Department of Dermatology and Venereology, Vinogradska cesta 29, HR-10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-14 | DOI: https://doi.org/10.1515/aut-2015-0050


The incidence of skin cancer is increasing by epidemic proportions. Basal cell cancer remains the most common skin neoplasm, and simple excision is generally curative. On the other hand, aggressive local growth and metastasis are common features of malignant melanoma, which accounts for 75% of all deaths associated with skin cancer. The primary cause of skin cancer is long exposure to solar ultraviolet radiation (UV-R) crossed with the amount of skin pigmentation and family genetics. It is believed that in childhood and adolescence, 80% of UV-R gets absorbed while in the remaining, 20 % gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Reducing the exposure time to sunlight, using sunscreens and protective textiles are the three ways of UV protection. Most people think that all the clothing will protect them, but it does not provide full sun screening properties. Literature sources claim that only 1/3 of the spring and summer collections tested give off proper UV protection. This is very important during the summer months, when UV index is the highest. Fabric UV protection ability highly depends on large number of factors such as type of fiber, fabric surface, construction, porosity, density, moisture content, type and concentration of dyestuff, fluorescent whitening agents, UV-B protective agents (UV absorbers), as well as nanoparticles, if applied. For all of these reasons, in the present paper, the results of UV protecting ability according to AS/NZS 4399:1996 will be discussed to show that standard clothing materials are not always adequate to prevent effect of UV-R to the human skin; and to suggest the possibilities for its improvement for this purpose enhancing light conversion and scattering. Additionally, the discrepancy in UV protection was investigated in distilled water as well as Adriatic Sea water.

Keywords: UV protection; skin cancer; cotton; textiles; fluorescence; natural zeolite


  • [1] World Health Organization (WHO): Skin cancers; available at: http://www.who.int/uv/faq/skincancer/en/index1.html, accessed 1st April 2014Google Scholar

  • [2] Lomas, A., Leonardi-Bee, J., Bath-Hextall, F. (2012). A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 166 (5), 1069-80.Web of ScienceGoogle Scholar

  • [3] Lipozenčić, J., Celić, D., Strnad, M., Jurakić Tončić, R., Pašić, A., Radoš, J., Znaor, A. (2010). Skin cancers in Croatia 2003-2005: epidemiological study. Collegium antropologicum. 34 (3); 865-869.Google Scholar

  • [4] Australian Institute of Health and Welfare & Australasian Association of Cancer Registries (2012). Cancer in Australia: an overview, Cancer series no. 74. Cat. no. CAN 70. (Canberra: AIHW).Google Scholar

  • [5] Robins, P., Perez, M. (1996). Understanding melanoma; The Skin Cancer Foundation (New York).Google Scholar

  • [6] Barbarić, J., Znaor, A. (2012). Incidence and mortality trends of melanoma in Croatia. Croatian Med J 53 (2), 135-140.Web of ScienceCrossrefGoogle Scholar

  • [7] Šitum M. (2012) Melanoma. Chapter 57 in Guidliness in common dermatoses and skin cancers diagnostics and treatments (in Croatian: Smjernice u dijagnostici i liječenju najčešćih dermatoza i tumora kože). Naklada Slap (Jastrebarsko).Google Scholar

  • [8] Armstrong, B. K., Kricker, A. (1993). How much melanoma is caused by sun exposure? Melanoma Res 3 (6), 395-401.CrossrefGoogle Scholar

  • [9] Berwick, M., Armstrong, B. K., Ben-Porat, L., Fine, J., Kricker, A., Eberle, C., Barnhill, R. (2005) Sun exposure and mortality from melanoma. J Natl Cancer Inst 97(3), 195-199.CrossrefGoogle Scholar

  • [10] Tarbuk, A., Grancarić, A. M., Šitum, M. (2014) Discrepancy of Whiteness and UV Protection in Wet State, Collegium Antropologicum 38 (4); 1099-1105.Google Scholar

  • [11] Tarbuk, A., Grancarić, A.M., Šitum, M., Martinis, M. (2010). UV Clothing and Skin Cancer, Collegium Antropologicum. 34 (Suppl.2); 179-183.Google Scholar

  • [12] Eckhardt, C., H. Rohwer (2000). UV protector for cotton fabrics. Text Chem Color, 32(4), 21-23.Google Scholar

  • [13] Hoffmann, K., Laperre, J., Avermaete, A., Altmeyer, P., Gambichler, T. (2001). Defined UV protection by apparel textiles, Arch Dermatol. 137(8),1089-1094.Google Scholar

  • [14] Gambichler, T., Rotterdam, S., Altmeyer, P., Hoffmann, K. (2001). Protection against ultraviolet radiation by commercial summer clothing: need for standardised testing and labelling, BMC Dermatology 1 (6).Google Scholar

  • [15] Reinert, G., Fuso, F., Hilfiker, R., Schmidt, E. (1997). UV-protecting properties of textile fabrics and their improvement. Text Chem Color 29(12), 36-43.Google Scholar

  • [16] Gies, P. H., Roy, C. R., Toomey, S., Mclennan, A. (1998). Protection against solar ultraviolet radiation, Mutation Res 422, 15-22.Google Scholar

  • [17] Grancarić, A. M., Tarbuk, A., Dumitrescu, I., Bišćan J. (2006). UV Protection of Pretreated Cotton – Influence of FWA’s Fluorescence, AATCC Review 6(4), 44-48.Google Scholar

  • [18] Tarbuk, A., Grancarić, A.M., Jančijev, I., Sharma, S. (2006). Protection against UV radiation using a modified polyester fabric, Tekstil 55 (8), 383-394.Google Scholar

  • [19] Hilfiker, R., Kaufmann, W., Reinert, G., Schmidt, E. (1996). Improving sun protection factors of fabrics by applying UV-absorbers. Text. Res. J. 66(2), 61-70.CrossrefGoogle Scholar

  • [20] Algaba, I., Riva, A., Crews, P. C. (2004). Influence of Fiber Type and Fabric Porosity on the UPF of Summer Fabrics, AATCC Review 4(2), 26-31.Google Scholar

  • [21] Grancarić, A.M., Penava, Ž., Tarbuk, A. (2005) UV Protection of Cotton – the Influence of Weawing Structure, Hemijska industrija (Serbian Soc. Chem. Ind. J.) 59(9-10), 230-234.CrossrefGoogle Scholar

  • [22] Grancarić, A. M., Tarbuk, A. (2009). EDA Modified PET Fabric Treated with Activated Natural Zeolite Nanoparticles, Materials Technology: Advan. Performance Materials, 24 (1); 58-63.CrossrefGoogle Scholar

  • [23] Cox Crews P., Zhou Y. (2004). The effect of wetness on the UVR transmission of woven fabrics. AATCC Review, 4(8), 41-43.Google Scholar

  • [24] Riva, A., Algaba, I., Prieto, R. (2007). Optical Brightening Agents Based on Stilbene and Distyryl Biphenyl for the Improvement of Ultraviolet Protection of Cotton Fabrics, Tekstil 56 (1), 1-6Google Scholar

  • [25] Zhou Y., Cox Crews P., (1998). Effect of OBAs and repeated launderings on UVR transmission through fabrics. Textile Chem. Color. 30 (11), 19-24.Google Scholar

  • [26] Dekanić, T., Pušić, T., Soljačić I. Impact of artificial light on optical and protective effects of cotton after washing with detergent containing fluorescent compounds, Tenside Surf. Det. 51 (2014) 5, 451-459.CrossrefGoogle Scholar

  • [27] Dekanić, T., Tarbuk, A., Pušić, T., Grancarić, A.M., Soljačić, I. (2015). Light Conversion for UV Protection by Textile Finishing and Care; Sunscreens: Properties, Role in Skin Cancer Prevention and Health Effects (Ed. Sharp, S.H.), Series: Dermatology - Laboratory and Clinical Research, Nova Science Publishers, NY, (in press)Google Scholar

  • [28] Tang, E., Cheng, G., Pang, X., Ma, X., Xing, F. (2006). Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property, Colloid Polym. Sci. 284 (4), 422-428.Google Scholar

  • [29] Farouk, A., Textor, T. Schollmeyer, E. Tarbuk, A. Grancarić, A. M. (2010). Sol-gel Derived Inorganic-organic Hybrid Polymers Filled with ZnO Nanoparticles as Ultraviolet Protection Finish for Textiles, AUTEX Res. J. 10 (8); 58-63.Google Scholar

  • [30] Sundaresan, K., Sivakumar A., Vigneswaran, C., Ramachandran, T. (2012). Influence of nano titanium dioxide finish, prepared by sol-gel technique, on the ultraviolet protection, antimicrobial, and self-cleaning characteristics of cotton fabrics, Journal of Industrial Textiles 41 (3), 259-277.Web of ScienceCrossrefGoogle Scholar

  • [31] Xin, J. H., Daoud, W. A., Kong, Y. Y. (2004). A new approach to UV-blocking treatment for cotton fabrics. Text. Res. J. 74, 97-110.Google Scholar

  • [32] Grancarić, A. M.; Prlić, I., Tarbuk, A., Marović, G. (2011). Activated Natural Zeolites on Textiles: Protection from Radioactive Contamination in Intelligent Textiles and Clothing for Ballistic and NBC Protection; NATO Science for Peace and Security Series B: Physics and Biophysics (eds. Kiekens, P.; Jayaraman, S.) Springer, (Heidelberg), 157-176.Google Scholar

  • [33] Grancarić, A. M., Tarbuk, A., Botteri, L. (2014). Light Conversion and Scattering in UV Protective Textiles. AUTEX Res. J. 14 (4); 1-12.Web of ScienceGoogle Scholar

  • [34] Bleyer, A., O’Leary, M., Barr, R., Ries, L.A.G. (2006) Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975-2000.: National Cancer Institute, (Bethesda).Google Scholar

  • [35] Grancarić, A. M., Tarbuk, A., Dekanić, T. (2004). Electropositive cotton; Tekstil 53 (2), 47-51.Google Scholar

  • [36] Tarbuk, A., Grancarić A.M., Leskovac, M. (2014). Novel cotton cellulose by cationisation during the mercerisation process - Part 1: Chemical and morphological changes, Cellulose 21(3); 2167-2179.Web of ScienceGoogle Scholar

  • [37] Grancarić, A.M., Marković, L. Tarbuk A. (2007). Active Multifunctional Cotton Treated with Zeolite Nanoparticles, Tekstil 56 (9); 533-542.Google Scholar

  • [38] Pušić, T.; Tarbuk, A., Dekanić, T. (2015). Bio-innovation in cotton scouring - acid and neutral pectinases. Fib Text East Eur. 23 (109) (1); 98-103.Google Scholar

About the article

Published Online: 2016-04-14

Published in Print: 2016-03-01

Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.1515/aut-2015-0050.

Export Citation

© 2016 Autex Research Journal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yanfei Ren, Jixian Gong, Ranran Fu, Zheng Li, Zhicai Yu, Jiangfei Lou, Fubang Wang, and Jianfei Zhang
Journal of Cleaner Production, 2017, Volume 148, Page 375

Comments (0)

Please log in or register to comment.
Log in