Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year


IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
Online
ISSN
2300-0929
See all formats and pricing
More options …

Modified Polymer Materials for Use in Selected Personal Protective Equipment Products

Emilia Irzmańska
  • Central Institute for Labor Protection - National Research Institute, Department of Personal Protective Equipment (Warsaw, Poland)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Brochocka
  • Central Institute for Labor Protection - National Research Institute, Department of Personal Protective Equipment (Warsaw, Poland)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-09 | DOI: https://doi.org/10.1515/aut-2015-0040

Abstract

The paper discusses the methods of modification of melt-blown polymer materials by the addition of a bactericidal agent or superabsorbent directly to the fibre-forming area during the melt-blown production process. It also presents tests of textile composites designed for use in selected types of personal protective equipment worn in the workplace. One example of the application of textile composites is the protective footwear insole. The insole composites contain specially developed variants of melt-blown nonwovens made from PP, PC, and PA fibres. Microbiological, hygienic, and mechanical tests have shown that the optimum insoles for all-rubber protective footwear are those made of bioactive composites containing a PC melt-blown nonwoven. Another example of composite application is the air-purifying half mask. Filter composites contain polymer nonwovens with the addition of different quantities of a superabsorbent. They have been tested for particle penetration, airflow resistance, and moisture sorption.

Keywords: superabsorbents; melt-blown polymer materials; personal protective equipment

References

  • [1] Brochocka, A., Mian, I., Majchrzycka, K., Sielski, J., & Tyczkowski, J. (2013) Plasma modified polycarbonate nonwovens as filtering material for liquid aerosols. Fibres and Textiles in Eastern Europe, 22(103), 80-84.Google Scholar

  • [2] Brochocka, A., & Majchrzycka, K. (2009). Technology for the Production of Bioactive Melt-blown Filtration Materials Applied to Respiratory Protective Devices. Fibres and Textiles in Eastern Europe, 17(76), 92–98.Google Scholar

  • [3] Brochocka, A., Majchrzycka, K., & Domaradzka, S.N (2002). Wpływ warunków aktywacji elektrostatycznej włóknin pneumotermicznych na ich właściwości filtracyjne (Influence of electrostatic activation conditions on the filtration properties of melt-blown nonwovens). Bezpieczeństwo Pracy, 4, 26–28.Google Scholar

  • [4] Brochocka, A., Majchrzycka, K., & Makowski, K. (2012). Penetration of different nanoparticles through melt – blown filter media used for respiratory protective devices. Textile Research Journal, 82(18), 1906 – 1919Web of ScienceCrossrefGoogle Scholar

  • [5] Chen, G.J., Xiao, H.M., & Wang, X. (2009). Parameter optimization of corona charging for melt-blown polypropylene electret nonwoven web used as air filter. In ICPADM, Harbin, China, 19-23 July 2009, paper no D-15, pp 389–391, ChinaGoogle Scholar

  • [6] Connor, D.J. (1999) Insoles liners and footwear incorporating loofah material. Patent 5930916. USA.Google Scholar

  • [7] Czaplicki, A. (2006). New method and equipment for manufacturing new adsorptive materials with active carbon content. Fibres and Textiles in Eastern Europe, 4(58), 75-78.Google Scholar

  • [8] Das, D., Thakur, R., & Pradhan, A.K. (2012). Optimization of corona discharge process using Box-Behnken design of experiments. Journal of Electrostatics, 70(4), 469-473.Web of ScienceCrossrefGoogle Scholar

  • [9] Dean, N. (2011) Shoe insoles with flexible inserts. Patent US20110162234 A1. USAGoogle Scholar

  • [10] Deeds, W.E. (1992). Charging apparatus for meltblown webs. Patent US5122048 (A). USA.Google Scholar

  • [11] Dutkiewicz, J. (2002). Superabsorbent materials from shellfish waste - A review. Journal of Biomedical Material Research, 63(3), 245–381.Google Scholar

  • [12] EN 13274-3:2001. Respiratory protective devices - Methods of test - Determination of breathing resistanceGoogle Scholar

  • [13] EN 13274-7:2008. Respiratory protective devices - methods of test - part 7: determination of particle filter penetrationGoogle Scholar

  • [14] EN 1392:2007. Adhesives For Leather And Footwear Materials-solvent-based And Dispersion Adhesives-testing Of Bond Strength Under Specified ConditionsGoogle Scholar

  • [15] EN 14119:2005. Testing of textiles - Evaluation of the action of microfungiGoogle Scholar

  • [16] EN 149:2001+A1:2009. Respiratory protective devices. Filtering half masks to protect against particles. Requirements, testing, markingGoogle Scholar

  • [17] Falkiewicz-Dulik, M., & Macura, A.B. (2006). Higiena obuwia w profilaktyce grzybicy stóp (Footwear hygiene in foot mycosis prophylaxis). Mikologia Lekarska, 13(4), 265-271Google Scholar

  • [18] Gulbiniene, A., Jankauskaite, V., & Kondratas, A. (2011). Investigation of the Water Vapour Transfer Properties of Textile Laminates for Footwear Linings. Fibres and Textiles in Eastern Europe, 19(86), 78–81Google Scholar

  • [19] Irzmańska, E. (2014). Footwear use at workplace and recommendations for the improvement of its functionality and hygiene. AUTEX Research Journal, 14(2), 89–94Google Scholar

  • [20] Irzmańska, E., Brochocka, A., & Majchrzycka, K. (2012). Textile composite materials with bioactive melt-blown nonwovens for protective footwear. Fibres and Textiles in Eastern Europe, 20(95), 119-125.Google Scholar

  • [21] Irzmańska, E., Dutkiewicz, J., & Irzmański, R. (2014). New approach to assessing comfort of use of protective footwear with a textile liner and its impact on foot physiology. Textile Research Journal, 84(7), 728–738Web of ScienceCrossrefGoogle Scholar

  • [22] Irzmańska, E., Orlikowski, W., Brochocka, A., & Majchrzycka, K. (2013) Composite insole for nonpermeable footwear. Patent application P.406296. PolandGoogle Scholar

  • [23] ISO 20345:2007. Personal protective equipment - Protective footwearGoogle Scholar

  • [24] ISO 20645:2006. Textile fabrics - Determination of antibacterial activity - Agar diffusion plate testGoogle Scholar

  • [25] ISO 5084:1999. Textiles - Determination of thickness of textiles]Google Scholar

  • [26] Kałużka, J., & Kudzin, M. (2011). Włóknina kompozytowa do filtracji powietrza, o właściwościach przeciwdrobnoustrojowych. Patent application P 393698, PolandGoogle Scholar

  • [27] Krucińska, I., Strzembosz, W., Majchrzycka, K., Brochocka, A., & Sulak, K. (2012). Biodegradable particle filtering half masks for respiratory protection. Fibres and Textiles in Eastern Europe, 6B(96), 77–83Google Scholar

  • [28] Kubik, D.A., & Davis, D.I. (1980). Melt-blown fibrous electrets. Patent US4215682 (A). USA.Google Scholar

  • [29] Kuklane K. (2004). The use of footwear insulation values measured on a thermal foot model. International Journal of Occupational Safety and Ergonomics, 10(1), 79-86.Google Scholar

  • [30] Lim, L.T., Auras, R., & Rubino M. (2008). Processing technologies for poly(lactic acids). Progress in Polymer Science, 33(8), 820 – 852.Google Scholar

  • [31] Motyl, E., & Łowkis, B. (2006). Effect of air humidity on charge decay and lifetime of PP electret nonwovens. Fibres and Textiles in Eastern Europe, 14(5), 39-42.Google Scholar

  • [32] Nifuku, M., Zhou, Y., Kisiel, A., Kobayashi, T., & Katoh, H. (2001). Charging characteristics for electret filter materials. Journal of Electrostatics, 51–52, 200-205Google Scholar

  • [33] Orlikowski, W., Brochocka, A., & Majchrzycka, K. (2013). Głowica do wytwarzania modyfikowanych elektretowych włóknin pneumotermicznych (Spinning head for the production of modified electret melt-blown nonwovens). Patent application P.406216. PolandGoogle Scholar

  • [34] PN-EN 31092:1998. Textiles-determination of physiological properties, measurement of thermal and water-vapour resistance under steady-state conditions (sweating quarded-hotplate test)Google Scholar

  • [35] Togahashi, R., & Ando, K. (1991). Melting a polymer, spinning fibers and putting in a binder and charging. Patent US5051159 (A). Japan]Google Scholar

  • [36] Tsai, P.P., Schreuder-Gibson, H., & Gibson, P. (2002). Different electrostatic methods for making electret filters. Journal of Electrostatics, 54(3-4), 333-341.CrossrefGoogle Scholar

  • [37] Twarowska-Schmidt, K. (2004). Evaluation of the suitability of some biodegradable polymers for the forming of fibres. Fibres and Textiles in Eastern Europe, 12(46), 15 – 18.Google Scholar

  • [38] Urbaniak – Domagała, W., Wrzosek, H., Szymanowski, H., Majchrzycka, K., & Brochocka, A. (2010). Plasma modification of filter nonwovens used for the protection of respiratory tracts. Fibres and Textiles in Eastern Europe, 83 (6), 94–99Google Scholar

  • [39] Wadsworth, L.C., & Hersh, S.P. (1983). Method of making fibrous electrets. Patent US4375718 (A).USAGoogle Scholar

  • [40] Wcisło, P., Kałużka, J., & Pęczkowska, B. (2006). Biodegradable polymers in melt-blown technology. Przegląd Włókienniczy, 1, 28–30.Google Scholar

  • [41] Yang, Z.Z,, Linm J.H., Tsai, I.S., & Kuo, T.Y. (2002). Particle filtration with electret of nonwoven polypropylene fabric. Textile Research Journal, 72(12), 1099–1104.CrossrefGoogle Scholar

  • [42] Żenkiewicz, M., Rytlewski, P., & Malinowski, R. (2011). Metody i urządzenia stosowane w modyfikowaniu tworzyw polimerowych plazma niskotemperaturową (Methods and equipment used in polymer modification with low-temperature plasma). Polimery-W, 56(3), 185–195.Google Scholar

About the article

Published Online: 2017-03-09

Published in Print: 2017-03-01


Citation Information: Autex Research Journal, Volume 17, Issue 1, Pages 35–47, ISSN (Online) 2300-0929, DOI: https://doi.org/10.1515/aut-2015-0040.

Export Citation

© 2017 Autex Research Journal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in