Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year


IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
Online
ISSN
2300-0929
See all formats and pricing
More options …

Investigation Of Sound Absorption Properties Of Bark Cloth Nonwoven Fabric And Composites

Samson Rwawiire
  • Corresponding author
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 4, 461 15 Liberec, Czech Republic
  • Department of Textile and Ginning Engineering, Faculty of Engineering, Busitema University, P.O Box 236, Tororo, Uganda
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Blanka Tomkova
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 4, 461 15 Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eulalia Gliscinska
  • Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Lodz University of Technology, ul. Zeromskiego 116, 90-924 Lodz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Izabella Krucinska
  • Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Lodz University of Technology, ul. Zeromskiego 116, 90-924 Lodz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Michalak
  • Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Lodz University of Technology, ul. Zeromskiego 116, 90-924 Lodz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiri Militky
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 4, 461 15 Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdul Jabbar
  • Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Studentska 4, 461 15 Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-23 | DOI: https://doi.org/10.1515/aut-2015-0010

Abstract

The quest for sound-absorbing materials that are not only environmentally friendly, but also sustainable is the foremost reason for natural fibre-acoustic materials. Bark cloth is a natural non-woven fabric that is largely produced from Ficus trees. An exploratory investigation of bark cloth a non-woven material and its reinforcement in epoxy polymer composites has been fabricated and investigated for the sound absorption properties so as to find the most suitable applications and also to see whether bark cloth can be used in some applications in place of man-made fibres. Three types of material species were investigated with their respective composites. The fibre morphology showed bark cloth to be a porous fabric that showed promising sound absorption properties at higher frequencies. The sound absorption results of four-layer material selections of Ficus natalensis, Ficus brachypoda and Antiaris toxicaria bark cloth showed sound absorption coefficient of 0.7; 0.71 and 0.91 at f > 6400 Hz, respectively. The bark cloth reinforced laminar epoxy composites had reduced sound absorption coefficients, which ranged from 0.1 to 0.35, which was attributed to decreased porosity and vibration in the bark cloth fibre network.

Keywords: Bark cloth; Acoustic properties; Epoxy; Composites

References

  • [1] Moszynski, P. (2011). WHO warns noise pollution is a growing hazard to health in Europe. BMJ, 342.Google Scholar

  • [2] Rwawiire, S., Luggya, G. W., Tomkova, B. (2013). Morphology, Thermal, and Mechanical Characterization of Bark Cloth from Ficus natalensis. ISRN Textiles, 2013.Google Scholar

  • [3] Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: a review of adequate materials for automotive applications. Composites. Part B, Engineering, 44(1), 120-127.Web of ScienceCrossrefGoogle Scholar

  • [4] Dittenber, D. B., & GangaRao, H. V. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419-1429.Web of ScienceCrossrefGoogle Scholar

  • [5] Mwasha, A. (2009). Designing bio-based geotextiles for reinforcing an embankment erected on the soft soil. Materials & Design, 30(7), 2657-2664.Web of ScienceGoogle Scholar

  • [6] Summerscales, J., Dissanayake, N. P., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), 1329-1335.CrossrefWeb of ScienceGoogle Scholar

  • [7] Sapuan, S. M., & Maleque, M. A. (2005). Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials & design, 26(1), 65-71.Google Scholar

  • [8] La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588.CrossrefWeb of ScienceGoogle Scholar

  • [9] http://www.researchandmarkets.com/reports/2881528/global-natural-fiber-composites-market-2014-2019

  • [10] Faruk, O., Bledzki, A. K., Fink, H. P., Sain, M. (2014) Progress Report on Natural Fiber Reinforced Composites. Macromolecular Materials and Engineering, 299(1), 9-26.CrossrefGoogle Scholar

  • [11] Hobson, J., Carus, M. (2011). Targets for bio-based composites and natural fibres. JEC composites, (63), 31-32.Google Scholar

  • [12] Liu, D. T., Xia, K. F., Yang, R. D., Li, J., Chen, K. F., Nazhad, M. M. (2012). Manufacturing of a biocomposite with both thermal and acoustic properties. Journal of Composite Materials, 46(9), 1011-1020Web of ScienceCrossrefGoogle Scholar

  • [13] Fatima, S., Mohanty, A. R. (2011). Acoustical and fire-retardant properties of jute composite materials. Applied Acoustics, 72(2), 108-114.CrossrefWeb of ScienceGoogle Scholar

  • [14] Zulkifh, R., Nor, M. M., Tahir, M. M., Ismail, A. R., Nuawi, M. Z. (2008). Acoustic properties of multi-layer coir fibres sound absorption panel. Journal of Applied Sciences, 8(20), 3709-3714.CrossrefGoogle Scholar

  • [15] Yang, H. S., Kim, D. J., & Kim, H. J. (2003). Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 86(2), 117-121.CrossrefGoogle Scholar

  • [16] Gliścińska, E., Michalak, M., Krucińska, I., Kazimierczak, J., Bloda, A., & Ciechańska, D. (2013). Sound Absorbing Composites from Nonwoven and Cellulose Submicrofibres. Journal of Chemistry and Chemical Engineering, 7, 942-948.Google Scholar

  • [17] Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42.CrossrefWeb of ScienceGoogle Scholar

  • [18] Khedari, J., Nankongnab, N., Hirunlabh, J., Teekasap, S. (2004). New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and environment, 39(1), 59-65.Google Scholar

  • [19] Mahzan, S., M Ahmad Zaidi, A., Arsat, N., NM Hatta, M., I Ghazali, M., RasoolMohideen, S. (2010). Study on sound absorption properties of coconut coir fibre reinforced composite with added recycled rubber. International Journal of Integrated Engineering, 2(1), 29-34.Google Scholar

  • [20] Doost-hoseini, K., Taghiyari, H. R., Elyasi, A. (2014). Correlation between sound absorption coefficients with physical and mechanical properties of insulation boards made from sugar cane bagasse. Composites Part B: Engineering, 58, 10-15.CrossrefWeb of ScienceGoogle Scholar

  • [21] Ersoy, S., Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70(1), 215-220.Web of ScienceCrossrefGoogle Scholar

  • [22] Yang, H. S., Kim, D. J., Kim, H. J. (2003). Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 86(2), 117-121.CrossrefGoogle Scholar

  • [23] Xiang, H. F., Wang, D., Liua, H. C. (2013). Investigation on sound absorption properties of kapok fibers. Chinese Journal of Polymer Science, 31(3), 521-529.CrossrefGoogle Scholar

  • [24] Rwawiire, S., Tomkova, B. (2014). Thermo-physiological and comfort properties of Ugandan barkcloth from Ficus natalensis. The Journal of The Textile Institute, 105(6), 648-653.Web of ScienceCrossrefGoogle Scholar

  • [25] Jiang, N., Chen, J. Y., & Parikh, D. V. (2009). Acoustical evaluation of carbonized and activated cotton nonwovens. Bioresource technology, 100(24), 6533-6536.CrossrefWeb of ScienceGoogle Scholar

  • [26] Gliścińska, E., Michalak, M., Krucińska, I. Sound absorption property of nonwoven based composites. Autex Research Journal, 13(4), 150-155.Web of ScienceGoogle Scholar

  • [27] Krucińska, I., Gliścińska, E., Michalak, M., Ciechańska, D., Kazimierczak, J., Bloda, A. (2014). Sound-absorbing green composites based on cellulose ultra-short/ultra-fine fibers. Textile Research Journal, DOI: 10.1177/0040517514553873CrossrefWeb of ScienceGoogle Scholar

  • [28] Maderuelo-Sanz, R., Nadal-Gisbert, A. V., Crespo-Amorós, J. E., Parres-García, F. (2012). A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Applied Acoustics, 73(4), 402-408.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2015-09-23

Published in Print: 2015-09-01


Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.1515/aut-2015-0010.

Export Citation

© Autex Research Journal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiaoning Tang and Xiong Yan
Composites Part A: Applied Science and Manufacturing, 2017, Volume 101, Page 360
[2]
Samson Rwawiire, Blanka Tomkova, Jiri Militky, Abdul Jabbar, and Bandu Madhukar Kale
Composites Part B: Engineering, 2015, Volume 81, Page 149

Comments (0)

Please log in or register to comment.
Log in