Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

4 Issues per year

IMPACT FACTOR 2016: 0.716
5-year IMPACT FACTOR: 0.784

CiteScore 2016: 0.63

SCImago Journal Rank (SJR) 2016: 0.237
Source Normalized Impact per Paper (SNIP) 2016: 0.400

Open Access
See all formats and pricing
More options …

Behaviour of Long-Lasting Stress Relaxation of Various Types of Yarns

Ginta Laureckienė
  • Corresponding author
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design,Kaunas University of Technology, Studentu str. 56, LT-51424 Kaunas, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rimvydas Milašius
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu str. 56, LT-51424 Kaunas, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-28 | DOI: https://doi.org/10.1515/aut-2017-0017


The main goal of this researcher is estimating of the possibility of long-lasting (even until 200,000 s) stress relaxation by empirical investigation, which was performed for a few thousands of seconds. The empirical investigations of longlasting stress relaxation of different types of yarns (multifilament polyester, cotton and woollen) at different levels of elongation, i.e. at 3%, 5%, 7% and 10%, were carried out. The method of long-lasting relaxation behaviour prediction by the break-point of relaxation rate as well as the linear dependence of second part of relaxation were used. It was found that the behaviour of relaxation can be described using time logarithmic scale by two straight lines, and the value of stress relaxation in long time period could be estimated by the second line. The break-point of relaxation rate of all kinds of yarns occurs in the area of 100-200 s after relaxations started. The obtained results showed that the place of relaxation break-point depends on the level of elongation but does not depend on the type of yarns.

Keywords: stress relaxation; polyester; cotton; woollen yarn


  • [1] Morton, W. E., Hearle, J. W S. (2008). Physical properties of textile fibres. 4th ed. Cambridge: Woodhead. Web of ScienceGoogle Scholar

  • [2] Milašius, R., Laureckiene, G. (2014). Prediction of Longlasting Relaxation Properties of Polyester Yarns and Fabrics. FIBRES & TEXTILES in Eastern Europe, 6(108), 97-100. Google Scholar

  • [3] Baszczyński, K. (2015). Effect of Repeated Loading on Textile Rope and Webbing Characteristics in Personal Equipment Protecting Against Falls from a Height. FIBRES & TEXTILES in Eastern Europe, 4(112), 110-118. Google Scholar

  • [4] Baltussen, J. J. M., Northolt, M. G. (2001). The viscoelastic extension of polymer fibres: creep behavior. Polymer, 42, 3835-3846. CrossrefGoogle Scholar

  • [5] Hezavehi, E., Azadiyan, M., Zolgharnein, P. (2013). Investigation and Modelling of Stress Relaxation on Cylindrical Shell Woven Fabrics: Effect of Experimental Speed. FIBRES & TEXTILES in Eastern Europe, 6(102), 64-73. Google Scholar

  • [6] Xia, N. N., Rong, M. Z., Zhang, M. Q., et al. (2016). Stress intensification - an abnormal phenomenon observed during stress relaxation of dynamic coordination polymer. eXPRESS Polymer Letters; 10(9), 742-749. Web of ScienceCrossrefGoogle Scholar

  • [7] Vangheluwe, L. (1993). Relaxation and inverse relaxation of yarns after dynamic loading. Textile Research Journal, 63(9), 552-556. CrossrefGoogle Scholar

  • [8] Vitkauskas, A. (1997). Influence of alternating rate of extension on stress relaxation in textile yarns. Material Science (Medžiagotyra), 1(4), 52-57. Google Scholar

  • [9] Kothari, V. K., Rajkhowa, R., Gupta, V. B. (2001). Stress relaxation and inverse stress relaxation in silk fibres. Journal of Applied Polymer Science, 82, 1147-1154. CrossrefGoogle Scholar

  • [10] Nachane, R. P., Sundaram, V. (1995). Analysis of Relaxation Phenomena in Textile Fibres Part I: Stress Relaxation. The Journal of the Textile institute, 86(1), 10-19.Google Scholar

  • [11] Manich, A. M., Ussman, M. H., Barella, A. (1999). Viscoelastic Behavior of Polypropylene. Textile Research Journal, 69(5), 325-330.Google Scholar

  • [12] Manich, A. M., Miguel, R., Lucas, J., et al. (2011). Texturing, stretching and relaxation behaviour of polylactide multifilament yarns. Textile Research Journal, 81(17), 1788-1795.Web of ScienceCrossrefGoogle Scholar

  • [13] Meredith, R. (1954). Relaxation of stress in stretched cellulose fibres. The Journal of the Textile institute, 45(6), T438-T461.CrossrefGoogle Scholar

  • [14] Meredith, R., Hsu, B. S. (1962). Dynamic bending properties of fibers: Effect of temperature on nylon 66, terylene, orlon, and viscose rayon. Journal of Polymer Science, 61(172), 253-270. Google Scholar

  • [15] Suhara, F., Kutty, S. K. N., Nando, G. B. (1998). Stress Relaxation of Polyester Fiber-Polyurethane Elastomer Composite with Different Interfacial Bonding Agents. Journal of Elastomers and Plastics, 30(2), 103-117. CrossrefGoogle Scholar

  • [16] Šajjn, D., Geršak, J., Flajs, R. (2006). Prediction of stress relaxation of fabrics with increased elasticity. Textile Research Journal, 76(10), 742-750.Google Scholar

  • [17] Geršak, J., Šajn, D., Bukosek, V. (2005). A study of the relaxation phenomena in the fabrics containing elastane yarns. International Journal of Clothing Science and Technology, 17(3/4), 188-199. CrossrefGoogle Scholar

  • [18] Van Miltenburg, J. G. M. (1991). Stress Relaxation and Tensile Modulus of Polymeric Fibers. Textile Research Journal, 61(6), 363-369.CrossrefGoogle Scholar

  • [19] Abromavičiūtė, J., Mikučionienė, D., Čiukas, R. (2011). Static Water Absorption of Knits from Natural and Textured Yarns. FIBRES & TEXTILES in Eastern Europe, 3(86), 60-63. Google Scholar

  • [20] Mikučionienė, D., Arbataitis, E. (2013). Comparative Analysis of the Influence of Bamboo and Other Cellulose Fibres on Selected Structural Parameters and Physical Properties of Knitted Fabrics. FIBRES & TEXTILES in Eastern Europe, 3(99), 76-80.Google Scholar

  • [21] Malik, S. A., Farooqc, A., Gerekeb, T. et al. (2016). Prediction of Blended Yarn Evenness and Tensile Properties by Using Artificial Neural Network and Multiple Linear Regression. Autex Research Journal, 16 (2), 43-50.Google Scholar

  • [22] Munakata, H. (1964). The Stress Relaxation and Set of Wool Fibers with Particular Reference to Their Structure and Mechanical Properties. Textile Research Journal, 34(2), 97-109.CrossrefGoogle Scholar

  • [23] Kubu, E. T., Frei, F., Montgomery, D. J. (1954). The Stress Relaxation of Fibrous Materials III. Stress Relaxation of Wool Keratin in Water and in Salt Solutions. Textile Research Journal, 24(7), 659-662.CrossrefGoogle Scholar

  • [24] Chapman, B. M. (1973). Bending stress relaxation and recovery of wool, nylon 66, and terylene fibers. Journal of Applied Polymer Science, 17(6), 1693-1713.CrossrefGoogle Scholar

  • [25] Bandyopadhyay, S., Ghosh, A., Ali, S. Y. (2011). Tensile Fatigue, Stress Relaxation, and Creep Behaviors of Worsted Core Spun Yarns. Journal of Applied Polymer Science, 121, 2123-2126.Google Scholar

  • [26] Inoue, M., Niwa, M. (1997). Tensile and Tensile Stress Relaxation Properties of Wool/Cotton Plied Yarns. Textile Research Journal, 67(5), 378-385.Google Scholar

  • [27] Zhang, J. T., Zhang, M., Li, S. X., et al. (2016). Residual stresses created during curing of a polymer matrix composite using a viscoelastic model. Composites Science and Technology, 130, 20-27.Google Scholar

  • [28] Hashemi, N., Asayesh, A., Jeddi, A. A. A., et al. (2016). The influence of two bar warp-knitted structure on the fabric tensile stress relaxation Part I: (reverse locknit, sharkskin, queens’ cord). The Journal of the Textile Institute, 107(4), 512-524. Web of ScienceGoogle Scholar

  • [29] Ardakani, T., Asayesh, A., Jeddi, A. A. A. (2016). The influence of two bar warp-knitted structure on the fabric tensile stress relaxation Part II: (locknit, satin, loop raised). The Journal of the Textile Institute, 107(11), 1357-1368. Web of ScienceGoogle Scholar

  • [30] Misak, H. E., Sabelkin, V., Miller, L., et al. (2013). Creep and Inverse Stress Relaxation Behaviors of Carbon Nanotube Yarns. Journal of Nanoscience and Nanotechnology, 13, 1-9. Web of ScienceGoogle Scholar

  • [31] Babay, A., Helali, H., Msahli, S. (2014). Study of the mechanical behaviour of the elastic-core-spun yarns. The Journal of the Textile Institute, 105(7), 701-710. Web of ScienceGoogle Scholar

  • [32] Laureckiene, G., Milašius, R. (2016). Influence of the Straining Level on the Long-Lasting Relaxation Behaviour of Polyester Yarns. FIBRES & TEXTILES in Eastern Europe, 1(115), 73-77.Google Scholar

About the article

Published Online: 2017-11-28

Published in Print: 2017-12-20

Citation Information: Autex Research Journal, Volume 17, Issue 4, Pages 379–385, ISSN (Online) 2300-0929, DOI: https://doi.org/10.1515/aut-2017-0017.

Export Citation

© Autex Research Journal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in