Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
See all formats and pricing
More options …

Effect of Temperature on the Structure and Filtration Performance of Polypropylene Melt-Blown Nonwovens

Si Cheng / Alam S. M. Muhaiminul / Zhonghua Yue
  • Tongxiang Jianmin Filter Material Co., Ltd., ChongFu Economic Development Zone, Tongxiang 314511, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Wang / Yuanxiang Xiao / Jiri Militky
  • Faculty of Textile Engineering, Department of Material Engineering, Technical University of Liberec, Studentská 1402/2, Liberec 46117, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohanapriya Prasad
  • Faculty of Textile Engineering, Department of Material Engineering, Technical University of Liberec, Studentská 1402/2, Liberec 46117, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guocheng Zhu
Published Online: 2020-01-10 | DOI: https://doi.org/10.2478/aut-2019-0067


By applying the simultaneous corona-temperature treatment, the effect of electret temperature on the structure and filtration properties of melt-blown nonwovens was investigated. Fiber diameter, pore size, thickness, areal weight, porosity, crystallinity, filtration efficiency, and pressure drop were evaluated. The results demonstrated that some changes occurred in the structure of electret fabrics after treatment under different temperatures. In the range of 20°C~105°C, the filtration efficiency of melt-blown nonwovens has a relationship with the change in crystallinity, and the pressure drop increased because of the change in areal weight and porosity. This work may provide a reference for further improving filtration efficiency of melt-blown nonwovens.

Keywords: Polypropylene; electret temperature; melt-blown fabrics; structure; filtration performance


  • [1] Lin, S., Nejati, S., Boo, C., Hu, Y., Osuji, C. O., et al. (2014). Omniphobic membrane for robust membrane distillation. Environmental Science and Technology Letters, 1, 443-447.Google Scholar

  • [2] He, M., Ichinose, T., Kobayashi, M., Arashidani, K., Yoshida, S., et al. (2016). Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. Toxicology and Applied Pharmacology, 297, 41-55.Google Scholar

  • [3] Deng, N., Hec, H., Yana, J., Zhao, Y., Ticha, E. B., et al. (2019). One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration. Polymer, 165, 174-179.Google Scholar

  • [4] Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., et al. (2014). Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environmental Health Perspectives, 122, 906-911.Google Scholar

  • [5] Qinfei, K., Xiangyu, Q. (2004). Nonwovens [M]. Donghua University Press (Shanghai, PR China), p. 266.Google Scholar

  • [6] Kacprzyk, R. (2002). Non-conventional application of unwoven fabrics. Journal of Electrostatics, 56, 111-119.Google Scholar

  • [7] Tanthapanichakoon, W., Maneeintr, K., Charinpanitkul, T., Kanaoka, C. (2003). Estimation of collection efficiency enhancement factor for all electret fiber with dust load. Journal of Aerosol Science, 34, 1505-1522.Google Scholar

  • [8] Ji, J. H., Bae, G. N., Kang, S. H. (2003). Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols. Journal of Aerosol Science, 34, 1493-1504.Google Scholar

  • [9] Soltani, I., Macosko, C. W. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens. Polymer, 145, 21-30.Google Scholar

  • [10] Uykun, N., Ergal, İ., Kurt, H., Gökçeören, A.T., Göcek, İ., et al. (2014). Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications. Journal of Bioactive and Compatible Polymers, 29(4), 382-397.Google Scholar

  • [11] Weeraya, S. L., Wiwut, T. (2006). Correlation for the efficiency enhancement factor of a single electret fiber. Journal of Aerosol Science, 37(2), 228-240.Google Scholar

  • [12] Megelski, S., Stephens, J. S., Chase, D. B., Rabolt, J. F. (2002). Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456-8466.Google Scholar

  • [13] Tang, M., Thompson, D., Chen, S.-C., Liang, Y. Puia, D. Y. H. (2018). Evaluation of different discharging methods on HVAC electret filter media. Building and Environment, 141, 206-214.Google Scholar

  • [14] Thakur, R., Das, D., Das, A. (2013). Electret air filters. Separation and Purification Review, 42, 87-129.Google Scholar

  • [15] Chang, D. Q., Chen, S. C., Pui, D. (2016). Capture of sub-500 nm particles using residential electret HVAC filter media-experiments and modeling. Aerosol and Air Quality Research, 16, 3349-3357.Google Scholar

  • [16] Shu, H., Xiangchao, C., Peng, L., Hui, G. (2017). Study on electret technology of air filtration material. Earth and Environmental Science, 100, 1-8.Google Scholar

  • [17] Brochocka, A., Majchrzycka, K., Makowski, K. (2013). Modified melt-blown nonwovens for respiratory protective devices against nanoparticles. Fibres and Textiles in Eastern Europe, 100, 106-111Google Scholar

  • [18] Chang, D.-Q., Tien, C.-Y., Peng, C.-Y., Tang, M., Chen, S.-C. (2019). Development of composite filters with high efficiency, low pressure drop, and high holding capacity PM2.5 filtration. Separation and Purification Technology, 212, 699-708.Google Scholar

  • [19] Zhang, J.-W., Lebrun, L., Guiffard, B., Belouadah, R., Guyomar, D., et al. (2011). Enhanced electromechanical performance of cellular polypropylene electrets charged at a high temperature. Journal of Physics D Applied Physics, 44, 415403Google Scholar

  • [20] Ji, Z.-B., Xia, Z.-F., Shen, L.-L., An, Z. (2005). Charge storage and its stability in corona charged polypropylene non-woven fabrics used as air filters. Wuli Xuebao/Acta Physica Sinica, 54, 3799-3804.Google Scholar

  • [21] Guim J. (2015). Crystal phase control and correlation to filtering performance for melt-blown polypropylene electret nonwovens. Hangzhou Dianzi University (Hangzhou).Google Scholar

  • [22] Xiao, H., Song, Y., Chen, G. (2014). Correlation between charge decay and solvent effect for melt-blown polypropylene electret filter fabrics. Journal of Electrostatics, 72, 311-314.Google Scholar

  • [23] Lei, L., Qi, D. (2017). Study on testing method for porosity of nonwoven fabric. Fiber Testing Garde, (05), 78-80.Google Scholar

  • [24] Kumar, P. S., Jayaraman, S., Singh, G. (2016). Polymer and composite nanofiber: electrospinning parameters and rheology properties. Rheology and Processing of Polymer Nanocomposites, 329-354.Google Scholar

  • [25] Mao, N., Russell, S. J. (2000). Directional permeability in homogeneous nonwoven structures part I: the relationship between directional permeability and fibre orientation. Journal of the Textile Institute, 91(2), 235-243.Google Scholar

  • [26] Park, H. S., Park, Y. O. (2005). Filtration properties of electrospun ultrafine fiber webs. Korean Journal of Chemical Engineering, 22(1), 165-172.Google Scholar

  • [27] Huang, J. (2012). Preparation and properties of modified melt-blown polypropylene nonwovens. Donghua University http://www.autexrj.com/ (Shanghai).

  • [28] BS EN 1882-1-2009: High efficiency air filters (HEPA and ULPA).Google Scholar

  • [29] (2008). GBT 13554-2008 High efficiency air filter. China Standard Press (Beijing).Google Scholar

  • [30] Wang, Z., Pan, Z. (2015). Preparation of hierarchical structured nano-sized/porous poly (lactic acid) composite fibrous membranes for air filtration. Applied Surface Science, 356, 1168-1179.Google Scholar

  • [31] Spielman, L., Goren, S. L. (1968). Model for predicting pressure drop and filtration efficiency in fibrous media. Environmental Science and Technology, 2(4), 279-287.Google Scholar

  • [32] Shim, W. S., Lee, D. W. (2013). Quality variables of meltblown submicron filter materials. Indian Journal of Fibre and Textile Research, 38(2), 132-137.Google Scholar

About the article

Published Online: 2020-01-10

Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0067.

Export Citation

© 2019 Si Cheng et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in