Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
See all formats and pricing
More options …

A New Approach for Thermal Resistance Prediction of Different Composition Plain Socks in Wet State (Part 2)

Tariq Mansoor
  • Corresponding author
  • Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic, taheembava1@gmail.com
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lubos Hes
  • Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic, taheembava1@gmail.com
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Bajzik
  • Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic, taheembava1@gmail.com
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2020-02-01 | DOI: https://doi.org/10.2478/aut-2019-0070


Socks’ comfort has vast implications in our everyday living. This importance increased when we have undergone an effort of low or high activity. It causes the perspiration of our bodies at different rates. In this study, plain socks with different fiber composition were wetted to a saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in wet state at different moisture levels. Theoretical thermal resistance is predicted using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fiber) in different models. By this modification, these mathematical models can predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance has reason able correlation with experimental results in both dry (laboratory conditions moisture) and wet states.

Keywords: Thermal resistance; plain socks; Mathematical models; wet state


  • [1] Slater, K. (1986). Discussion paper the assessment of comfort. The Journal of the Textile Institute, 77(3), 157-171.Google Scholar

  • [2] Adler, M. M., Walsh, W. K. (1984). Mechanisms of transient moisture transport between fabrics. Textile Research Journal, 54(5), 334-343.Google Scholar

  • [3] Woodcock, A. H. (1962). Moisture transfer in textile systems, Part I. itleTextile Research Journal, 32(8), 628-633.Google Scholar

  • [4] Gagge, A. P., Gonzalez, R. R. (1974). Physiological and physical factors associated with warm discomfort in sedentary man. entalEnvironmental Research, 7(2), 230-242.Google Scholar

  • [5] Plante, A. M., Holcombe, B. V., Stephens, L. G. (1995). Fiber hygroscopicity and perceptions of dampness part I: Subjective trials. Textile Research Journal, 65(5), 293-2985.Google Scholar

  • [6] Wong, A. S. W., Li, Y. (1999). Psychological requirement of professional athlete on active sportswear. In: The 5th Asian Textile Conference, Kyoto, Japan, 1999.Google Scholar

  • [7] Havenith, G., Holmér, I., Meinander, H., DenHartog, E., Richards, M., et al. (2006). Assessment of thermal properties of protective clothing and their use. EU Final Report.Google Scholar

  • [8] Lotens, W. (1993). Ph.D. Dissertation. TU Delft, Delft University of Technology.Google Scholar

  • [9] Bogusławska-Bączek, M., Hes, L. (2013). Effective water vapour permeability of wet wool fabric and blended fabrics. Fibres &Textiles in Eastern Europe, 21(97), 67-71.Google Scholar

  • [10] Oğlakcioğlu, N., Marmarali, A. (2010). Thermal comfort properties of cotton knitted fabrics in dry and wet states. Tekstil ve Konfeksiyon, 20(3), 213-217.Google Scholar

  • [11] Chen, Y. S., Fan, J., Zhang, W. (2003). Clothing thermal insulation during sweating. Textile Research Journal, 73(2), 152-157.Google Scholar

  • [12] Kuklane, K., Holmér, I. (1998). Effect of sweating on insulation of footwear. International Journal of Occupational Safety and Ergonomics, 4(2), 123-136.Google Scholar

  • [13] Kuklane, K., Holmer, I., Giesbrecht, G. (1999). Change of footwear insulation at various sweating rates. Applied Human Science, 18(5), 161-168.Google Scholar

  • [14] Richards, M. G. M., Rossi, R., Meinander, H., Broede, P., Candas, V., et al. (2008). Dry and wet heat transfer through clothing dependent on the clothing properties under cold conditions. International Journal of Occupational Safety Ergonomics, 14(1), 69-76.Google Scholar

  • [15] Kanat, Z. E., Özdil, N. (2018). Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. The Journal of the Textile Institute, 109(9), 1247-1253.Google Scholar

  • [16] Matusiak, M. (2013). Modelling the thermal resistance of woven fabrics. The Journal of the Textile Institute, 104(4), 426-437.Google Scholar

  • [17] Qian, X., Fan, J. (2006). Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. Annals of Occupational Hygiene, 50(8), 833-842.Google Scholar

  • [18] Mangat, M. M., Hes, L. (2014). Thermal resistance of denim fabric under dynamic moist conditions and its investigational confirmation. Fibres & Textiles in Eastern Europe, 22(6), 101-105.Google Scholar

  • [19] Mangat, M. M., Hes, L., Bajzík, V. (2015). Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2), 200-210.Google Scholar

  • [20] Hollies, R. S., Bogaty, H. (1965). Some thermal properties of fabrics: part II: the influence of water content. Textile Research Journal, 35(2), 187-190.Google Scholar

  • [21] Naka, S., Kamata, Y. (1977). Thermal conductivity of wet fabrics. Journal of the Textile Machinery Society of Japan, 23(4), 114-119.Google Scholar

  • [22] Wei, J., Xu, S., Liu, H., Zheng, L., Qian, Y. (2015). Simplified model for predicting fabric thermal resistance according to its microstructural parameters. Fibres & Textiles in Eastern Europe, 23(4), 57-60.Google Scholar

  • [23] Hes, L., Dolezal, I. (1989). New method and equipment for measuring thermal properties of textiles. Sen’i Kikai Gakkaishi (Journal Text. Mach. Soc. Japan), 42(8), T124-T128.Google Scholar

  • [24] Fricke, H. (1924). A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Physical Review, 24(5), 575.Google Scholar

  • [25] Maxwell, J. C. (1954). A treatise on electricity and magnetism.Google Scholar

  • [26] Eucken, A. (1940). Allgemeine gesetzmäßigkeiten für das wärmeleitvermögen verschiedener stoffarten und aggregatzustände. Forschung auf dem Gebiet des Ingenieurwesens A, 11(1), 6-20.Google Scholar

  • [27] Carson, J. K. (2002). Prediction of the thermal conductivity of porous foods: A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering, Massey University, Palmerston North, New Zealand, 2002. Massey University.Google Scholar

  • [28] Schuhmeister, J. (1877). Ber. K. Akad. Wien (Math-Naturw. Klasse), vol. 76, p. 283.Google Scholar

  • [29] Militký, J., Becker, C. (2011). Selected topics of textile and material science. Select Topics of Textile and Material Science, p. 404.Google Scholar

  • [30] Ullmann, F. (2008). Ullmann’s fibers., vol. 1. Wiley-VCH Verlag (Weinheim).Google Scholar

  • [31] Lowther, J., Keller, G., Warwick, B. (2006). Statistics for management and economics, 48(9). Cengage Learning.Google Scholar

  • [32] Haghi, A. K. (2005). Experimental survey on heat and moisture transport through fabrics. International Journal of Applied Mechanics and Engineering, 10(2), 217-226.Google Scholar

  • [33] Dias, T., Delkumburewatte, G. B. (2007). The influence of moisture content on the thermal conductivity of a knitted structure. Measurement Science and Technology, 18(5), 1304.Google Scholar

About the article

Published Online: 2020-02-01

Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0070.

Export Citation

© 2019 Tariq Mansoor et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in