Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
Online
ISSN
2300-0929
See all formats and pricing
More options …

The Status of Textile-Based Dry EEG Electrodes

Granch Berhe Tseghai
  • Corresponding author
  • Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
  • Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benny Malengier / Kinde Anlay Fante / Lieva Van Langenhove
Published Online: 2020-01-07 | DOI: https://doi.org/10.2478/aut-2019-0071

Abstract

Electroencephalogram (EEG) is the biopotential recording of electrical signals generated by brain activity. It is useful for monitoring sleep quality and alertness, clinical applications, diagnosis, and treatment of patients with epilepsy, disease of Parkinson and other neurological disorders, as well as continuous monitoring of tiredness/ alertness in the field. We provide a review of textile-based EEG. Most of the developed textile-based EEGs remain on shelves only as published research results due to a limitation of flexibility, stickability, and washability, although the respective authors of the works reported that signals were obtained comparable to standard EEG. In addition, nearly all published works were not quantitatively compared and contrasted with conventional wet electrodes to prove feasibility for the actual application. This scenario would probably continue to give a publication credit, but does not add to the growth of the specific field, unless otherwise new integration approaches and new conductive polymer composites are evolved to make the application of textile-based EEG happen for bio-potential monitoring.

Keywords: Electroencephalogram; brain activity monitoring; textile-based electrode

References

  • [1] Chetna, M., Shah, S. (2008). Diseases of the brain and nervous system caution. Team Spirit (India) Pvt. Ltd (Ahmedabad).Google Scholar

  • [2] Matilla-dueñas, A., Corral-juan, M. (2017). Rare diseases epidemiology: update and overview, vol. 1031, Springer International Publishing.Google Scholar

  • [3] Beniczky, S., Polster, T., Kjaer, T. W., Hjalgrim, H. (2013). Detection of generalized tonic–clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study. Epilepsia, 54(4), 1-4.Google Scholar

  • [4] Kusmakar, S., Karmakar, C. K., Yan, B., O’Brien, T. J., Muthuganapathy, R., Palaniswami, M. (2019). Automated detection of convulsive seizures using a wearable accelerometer device. IEEE Transactions on Biomedical Engineering, 66(2), 421-432.Google Scholar

  • [5] Halford, J. J., Sperling, M. R., Nair, D. R., Dlugos, D. J., Tatum, W. O., et al. (2017). Detection of generalized tonic–clonic seizures using surface electromyographic monitoring. Epilepsia, 58(11), 1861-1869.Google Scholar

  • [6] Lee, J. W. (2018). Real-time non-EEG convulsive seizure detection devices: they work; now what? Epilepsy Currents, 18(3), 164-166.Google Scholar

  • [7] Strong, V., Brown, S. W., Walker, R. (1999). Seizure-alert dogs — fact or fiction ? Seizures, 8, 62-65.Google Scholar

  • [8] Miller, J. W. (2010). Are generalized tonic–clonic seizures really ‘generalized’? Epilepsy Currents, 10(4), 80-81.Google Scholar

  • [9] Hua, H., Tang, W., Xu, X., Feng, D. D., Shu, L. (2019). Flexible multi-layer semi-dry electrode for scalp EEG measurements at Hairy sites. Micromachines, 10(518), 1-13.Google Scholar

  • [10] Sun, Y., Lo, F. P. W., Lo, B. (2019). EEG-based user identification system using 1D-convolutional long short-term memory neural networks. Expert System with Applications, 125, 259-267.Google Scholar

  • [11] Khalaf, A., Sejdic, E., Akcakaya, M. (2019). EEG-fTCD Hybrid brain-computer interface using template matching and wavelet decomposition. Journal of Neural Engineering, 16(3).Google Scholar

  • [12] Radhakrishnan, J. K., Nithila, S., Kartik, S. N., Bhuvana, T., Kulkarni, G. U., et al. (2018). A novel, needle-array dry-electrode with stainless steel micro-tips, for electroencephalography monitoring. Journal of Medical Device, 12(4), 1-7.Google Scholar

  • [13] Wunder, S., Hunold, A., Fiedler, P., Schlegelmilch, F., Schellhorn, K., et al. (2018). Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation. Science Reports, 8(1), 1-11.Google Scholar

  • [14] Alawieh, H., Hammoud, H., Haidar, M., Nassralla, M. H., El-Hajj, A. M., et al. (2016). Patient-aware adaptive ngram-based algorithm for epileptic seizure prediction using EEG signals. 2016 IEEE 18th International Conference on e-Health Networking, Application and Services Healthcom, 2016, 1-6.Google Scholar

  • [15] Spies, R., Gassert, R. (2019). A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG. Journal of Neural Engineering, 16(1), 016019.Google Scholar

  • [16] Al Ghayab, H. R., Li, Y., Siuly, S., Abdulla, S. (2018). Epileptic seizures detection in EEGs blending frequency domain with information gain technique. Soft Computing, 23(1), 227-239.Google Scholar

  • [17] Chen, Y. J., Lin, Y. S., Chiueh, H. (2016). EEG recording frontend circuitry for epileptic seizure detection headband. 2016 IEEE Healthcare Innovations and Point-of-Care Technologies, Conference HI-POCT, 2016, 42-45.Google Scholar

  • [18] Wang, F., Li, G., Chen, J., Duan, Y. (2016). Novel semi-dry electrodes for brain–computer interface applications. Journal of Neural Engineering, 13(4), 046021.Google Scholar

  • [19] Kannan, R., Ali, S. S. A., Farah, A., Adil, S. H., Khan, A. (2017). Smart wearable EEG sensor. Procedia Computer Science, 105(December 2016), 138-143.Google Scholar

  • [20] Kappel, S. L., Rank, M. L., Toft, H. O., Andersen, M., Kidmose, P. (2018). Dry-contact electrode ear-EEG. IEEE Transactions on Biomedical Engineering, 66(1), 150-158.Google Scholar

  • [21] Xing, X., Wang, Y., Pei, W., Guo, X., Liu, Z., et al. (2018). A high-speed SSVEP-based BCI using dry EEG electrodes. Scientific Reports, 8(1), 1-10.Google Scholar

  • [22] Advanced Brain Monitoring. (2019). X series – EEG wireless monitoring. [Online]. Web site: https://www.advancedbrainmonitoring.com/.

  • [23] Neuro:On. (2019). Neuro: on smart sleep mask. [Online]. Web site: https://neuroonopen.com/.

  • [24] OpenBCI. (2019). Ultracortex ‘mark IV’ EEG headset. [Online]. Web site: https://openbci.com/.

  • [25] Neurosky. (2019). ThinkGearTM AM (TGAM EEG biosensor). [Online]. Web site: http://neurosky.com/biosensors/eeg-sensor/.

  • [26] PLX Devices. (2019). XWave EEG. [Online]. Web site: https://www.plxdevices.com/.

  • [27] Science Division. (2019). EEG SENSOR - T9305M. [Online]. Web site: http://www.thoughttechnology.com/sciencedivision/pages/products/eegflex.html.

  • [28] Plux. (2019). SENS-EEG-UCE6. [Online]. Web site: https://plux.info/.

  • [29] Lee, E., Cho, G. (2019). PU nanoweb-based textile electrode treated with single-walled carbon nanotube/silver nanowire and its application to ECG monitoring. Smart Materials and Structures, 28(4), 045004.Google Scholar

  • [30] Ankhili, A., Tao, X., Koncar, V., Coulon, D., Tarlet, J. (2019). Ambulatory evaluation of ECG signals obtained using washable textile-based electrodes made with. Sensors, 19(416), 13.Google Scholar

  • [31] Kang, T., Park, J., Yun, G., Hee, H., Lee, H. (2019). A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT : PSS film. Sensors Actuators B. Chemical, 282, 145-151.Google Scholar

  • [32] Achilli, A., Bonfiglio, A., Pani, D. (2018). Design and characterization of screen-printed textile electrodes for ECG monitoring. IEEE Sensors Journal, 18(10), 4097-4107.Google Scholar

  • [33] An, X., Stylios, G. K. (2018). A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking. Materials (Basel), 11(10), pii: E1887.Google Scholar

  • [34] Wu, W., Pirbhulal, S., Sangaiah, A. K., Mukhopadhyay, S. C., Li, G. (2018). Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. Future Generation Computer Systems, 86, 515-526.Google Scholar

  • [35] Das, P. S., Park, J. Y. (2017). A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomedical Signal Processing Control, 33, 72-82.Google Scholar

  • [36] Lee, S., Kim, M. O., Kang, T., Park, J., Choi, Y. (2018). Knit band sensor for myoelectric control of surface EMG-based prosthetic hand. IEEE Sensors Journal, 18(20), 8578-8586.Google Scholar

  • [37] Shafti, A., Ribas Manero, R. B., Borg, A. M., Althoefer, K., Howard, M. J. (2017). Embroidered electromyography: a systematic design guide. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(9), 1472-1480.Google Scholar

  • [38] Yand, G., Deng, J., Pang, G., Zhang, H., Li, J., et al. (2018). An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE Journal of Translational Engineering in Health and Medicine, 6(March, 2018).Google Scholar

  • [39] Paul, G. M., Cao, F., Torah, R., Yang, K., Beeby, S., et al. (2014). A smart textile based facial EMG and EOG computer interface. IEEE Sensors Journal, 14(2), 393-400.Google Scholar

  • [40] Niijima, A., Isezaki, T., Aoki, R., Watanabe, T. (2017). hitoeCap: wearable EMG sensor for monitoring masticatory muscles with PEDOT-PSS textile electrodes. In: ISWC ‘17 Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, Hawaii. September 11-15, 2017, 215-220.Google Scholar

  • [41] Kang, T. H., Merritt, C., Karaguzel, B., Wilson, J., Franzon, P., et al. (2006). Sensors on textile substrates for home-based healthcare monitoring. Conference Proceedings -1st Transdisciplinary Conference on Distributed Diagnosis Home Healthcare, D2H2 2006, vol. 2006, Arlington, VA, USA, 2-4 April 2006, 5-7.Google Scholar

  • [42] Wu, J., Jia, W., Xu, C., Gao, D., Sun, M. (2017). Impedance analysis of ZnO nanowire coated dry EEG electrodes. Journal of Biomedical Engineering Informatics, 3(1), 44.Google Scholar

  • [43]. Li, H., Chen, X., Cao, L., Zhang, C., Tang, C., et al. (2017). Textile-based ECG acquisition system with capacitively coupled electrodes. Transactions of the Institute of Measurement and Control, 39(2), 141-148.Google Scholar

  • [44] Kirkup, L., Searle, A. (2000). A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiological Measurement, 21(2), 271-283.Google Scholar

  • [45] Lopez-Gordo, M. A., Sanchez Morillo, D., Pelayo Valle, F. (2014). Dry EEG electrodes. Sensors (Switzerland), 14(7), 12847-12870.Google Scholar

  • [46] Löfuede, J., Seoane, F., Thordstein, M. (2010). Soft textile electrodes for EEG monitoring. In: Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine, ITAB, Corfu, Greece, 3-5 November 2010, 4-7.Google Scholar

  • [47] Lin, C.-T., Liao, L.-D., Liu, Y.-H., Wang, I.-J., Lin, B.-S., et al. (2011). Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Transactions on Biomedical Engineering, 58(5), 1200-1207.Google Scholar

  • [48] Salvo, P., Raedt, R., Carrette, E., Schaubroeck, D., Vanfleteren, J., et al. (2012). A 3D printed dry electrode for ECG/EEG recording. Sensors Actuators, A: Physical, 174(1), 96-102.Google Scholar

  • [49] Löfhede, J., Seoane, F., Thordstein, M. (2012). Textile electrodes for EEG recording - a pilot study. Sensors (Switzerland), 12(12), 16907-16919.Google Scholar

  • [50] Kumar, N. M., Thilagavathi, G. (2014). Design and development of textile electrodes for EEG measurement using copper plated polyester fabrics. Journal of Textile and Apparel, Technology and Management, 8(4), 1-8.Google Scholar

  • [51] Sahi, A., Rai, P., Oh, S., Ramasamy, M., Harbaugh, R. E., et al. (2014). Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system. Nanosensors, Biosensors, Info-Tech Sensors Systems, 9060, 1-9.Google Scholar

  • [52] Muthukumar, N., Thilagavathi, G., Kannaian, T. (2016). Polyaniline-coated foam electrodes for electroencephalography (EEG) measurement. The Journal of Textile Institute, 107(3), 283-290.Google Scholar

  • [53] Peng, H. L., Liu, J.-Q., Tian, H.-G., Dong, Y.-Z., Yang, B., et al. (2016). A novel passive electrode based on porous Ti for EEG recording. Sensors Actuators, B Chem., 226, 349-356.Google Scholar

  • [54] Gao, K. P., Yang, H. J., Wang, X. L., Yang, B., Liu, J. Q. (2018). Soft pin-shaped dry electrode with bristles for EEG signal measurements. Sensors Actuators, A Physical, 283, 348-361.Google Scholar

  • [55] Renz, A. F., Reichmuth, A. M., Stauffer, F., Thompson-Steckel, G., Janos, V. (2018). A guide towards long-term functional electrodes interfacing neuronal tissue. Journal of Neural Engineering, 15(6), 061001.Google Scholar

  • [56] Zerafa, R., Camilleri, T., Falzon, O., Camilleri, K. P. (2018). To train or not to train ? A survey on training of feature extraction methods for SSVEP-based BCIs. Journal of Neural Engineering, 15(5), 051001.Google Scholar

  • [57] Senn, P., Shepherd, R. K., Fallon, J. B. (2018). Focused electrical stimulation using a single current source. Journal of Neural Engineering, 15(5), 056018.Google Scholar

  • [58] Craik, A., He, Y., Contreras-Vidal, J. L. (2019). Deep learning for electroencephalogram (EEG) classification tasks: A review. Journal of Neural Engineering, 16(3), 031001.Google Scholar

  • [59] Sadatnejad, K., Rahmati, M., Rostami, R. (2019). EEG representation using multi-instance framework on the manifold of symmetric positive definite matrices. Journal of Neural Engineering, 16(3), 036016.Google Scholar

  • [60] Zhang, X., D’Arcy, R., Menon, C. (2019). Scoring upper-extremity motor function from EEG with artificial neural networks: a preliminary study. Journal of Neural Engineering, 16(3), 036013.Google Scholar

  • [61] Higgins, G., Faul, S., Glavin, M., Jones, E., McGinley, B., et al. (2013). The effects of lossy compression on diagnostically relevant seizure information in EEG signals. IEEE Journal of Biomedical Health Informatics, 17(1), 121-127.Google Scholar

  • [62] Golparvar, A. J., Yapici, M. K. (2018). Electrooculography by wearable graphene textiles. IEEE Sensors Journal, 18(21), 8971-8978.Google Scholar

About the article

Published Online: 2020-01-07


Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0071.

Export Citation

© 2019 Granch Berhe Tseghai et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in