Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
See all formats and pricing
More options …

Preparation of Polypyrrole/Silver Conductive Polyester Fabric by UV Exposure

Xiaofei Wang
  • Engineering Research Center of Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ailan Wan
  • Corresponding author
  • Engineering Research Center of Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gaoming Jiang
  • Engineering Research Center of Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafiu King Raji
  • Department of Fashion Engineering, Glorious Sun Guangdong School of Fashion, Huizhou University, Huizhou, Guangzhou 516007, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dongzheng Yu
  • Engineering Research Center of Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2020-01-21 | DOI: https://doi.org/10.2478/aut-2019-0075


In this study, polypyrrole/silver (PPy/Ag) conductive polyester fabric was synthesized via an in-situ polymerization method under UV exposure, using silver nitrate (AgNO3) as an oxidizing agent in the presence of sodium dodecyl benzene sulfonate (SDBS) and polyvinylpyrrolidone (PVP). The effect of the preparation processes on the properties of the conductive fabric was studied experimentally, and the optimal preparation process of the conductive fabric was obtained. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) showed the chemical structural properties of the PPy/Ag conductive polyester fabric. X-ray diffraction (XRD) confirmed the presence of silver nanoparticles in the prepared material. Furthermore, subsequent test results proved that the PPy/Ag conductive polyester fabric prepared by UV irradiation had good electrical conductivity and antibacterial property. The sheet resistance of the prepared conductive fabric was 61.54 Ω • sq−1.

Keywords: UV exposure; polypyrrole; conductive polyester fabric; in-situ polymerization; nano silver particles


  • [1] Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., et al. (2012). Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces. B, Biointerfaces, 92(4), 35-41.Google Scholar

  • [2] Yang, X., Lu, Y. (2005). Preparation of polypyrrolecoated silver nanoparticles by one-step UV-induced polymerization. Materials Letters, 59(19-20), 2484-2487.Google Scholar

  • [3] Wróbel, A. M., Kryszewski, M., Rakowski, W., Okoniewski, M., Kubacki, Z. (1978). Effect of plasma treatment on surface structure and properties of polyester fabric. Polymer, 19(8), 908-912.Google Scholar

  • [4] Habib, U. M., Ha, C. S. (2016). In situ prepared polypyrrole–Ag nanocomposites: optical properties and morphology. Journal of Materials Science, 51(16), 7536-7544.Google Scholar

  • [5] Kiani, G., Nourizad, A., Nosrati, R. (2018). In-situ chemical synthesis of polypyrrole/silver nanocomposite for the use as a room temperature ammonia gas sensor. Fibers and Polymers, 19(10), 2188-2194.Google Scholar

  • [6] Su, P. G., Chang, Y. P. (2008). Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/ Ag/TiO2 nanoparticles composite thin films. Sensors and Actuators B: Chemical, 129(2), 915-920.Google Scholar

  • [7] Atmeh, M., Alcock-Earley, B. E. (2011). A conducting polymer/Ag nanoparticle composite as a nitrate sensor. Journal of Applied Electrochemistry, 41(11), 1341-1347.Google Scholar

  • [8] Ramesan, M. T., Santhi, V. (2017). In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. Journal of Materials Science Materials in Electronics, 28(24), 1-11.Google Scholar

  • [9] Yang, Y., Wen, J., Wei, J., Xiong, R., Shi, J., et al. (2013). Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination. ACS Applied Materials and Interfaces, 5(13), 6201-6207.Google Scholar

  • [10] Kate, K. H., Singh, K., Khanna, P. K. (2011). Microwave formation of polypyrrole/Ag nanocomposite based on interfacial polymerization by use of AgNO3. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(2), 199-202.Google Scholar

  • [11] Waghuley, S. A., Yenorkar, S. M., Yawale, S. S., Yawale, S. P. (2008). Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sensors and Actuators B: Chemical, 128(2), 366-373.Google Scholar

  • [12] Stempien, Z., Rybicki, T., Rybicki, E., Kozanecki, M., Szynkowska, M. I. (2015). In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synthetic Metals, 202, 49-62.Google Scholar

  • [13] Babu, K. F., Dhandapani, P., Maruthamuthu, S., Anbu, K. M. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90(4), 1557-1563.Google Scholar

  • [14] Gao, B., Wang, D., Qu, N., Zhao, C. (2018). Flexible carbon cloth based PPy-Ag nanoparticles composite film for supercapacitors. IOP Conference Series Materials Science and Engineering, 394.Google Scholar

  • [15] Pirsa, S., Zandi, M., Almasi, H. (2015). Determination of quality and spoilage of milk by synthesized polypyrrole-Ag nanocomposite fiber at room temperature. Journal of Food Process Engineering, 39, 266-272.Google Scholar

  • [16] Banaszczyk, J., Schwarz, A., Mey, G. D., Langenhove, L. V. (2010). The van der Pauw method for sheet resistance measurements of polypyrrole-coated para-aramide woven fabrics. Journal of Applied Polymer Science, 117(5), 2553-2558.Google Scholar

  • [17] Saad, A., Cabet, E., Lilienbaum, A., Hamadi, S., Abderrabba, M., et al. (2017). Polypyrrole/Ag/mesoporous silica nanocomposite particles: design by photopolymerization in aqueous medium and antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers, 80, 1022-1030.Google Scholar

  • [18] Upadhyay, J., Kumar, A., Gogoi, B., Buraqohain, A. K. (2015). Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Materials Science and Engineering C, 54, 8-13.Google Scholar

  • [19] Ullah, M. H., Kim, I., Ha, C. S. (2006). In-situ preparation of binary-phase silver nanoparticles at a high Ag+ concentration. Journal of Nanoscience and Nanotechnology, 6(3), 777.Google Scholar

  • [20] Yang, X., Liang, Li., Shang, S., Pan, G., Yu, X., et al. (2010). Facial synthesis of polypyrrole/silver nanocomposites at the water/ionic liquid interface and their electrochemical properties. Materials Letters, 64(17), 1918-1920.Google Scholar

  • [21] Zang, L., Qiu, J., Yang, C., Sakai, E. (2016). Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Scientific Reports, 6, 20470.Google Scholar

  • [22] Mehmood, T., Kaynak, A., Kouzani, A., Dai, J., Magniez, K., et al. (2014). Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion. Materials Chemistry and Physics, 143(2), 668-675.Google Scholar

  • [23] Chen, A., Kamata, K., Nakagawa, M., Lyoda, T., Wang, H., et al. (2005). Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). Journal of Physical Chemistry B, 109(39), 18283-18288.Google Scholar

  • [24] Pintér, E., Patakfalvi, R., Fülei, T., Ginql, Z., Dékany, I., et al. (2005). Characterization of polypyrrole/silver nanocomposites prepared in the presence of different dopants. The Journal of Physical Chemistry B, 109(37), 17474-17478.Google Scholar

About the article

Published Online: 2020-01-21

Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0075.

Export Citation

© 2019 Xiaofei Wang et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in