Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
Online
ISSN
2300-0929
See all formats and pricing
More options …

A Review of Contemporary Techniques for Measuring Ergonomic Wear Comfort of Protective and Sport Clothing

Yetanawork Teyeme
  • Corresponding author
  • Ghent University, Faculty of Engineering and Architecture, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
  • Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar, Ethiopia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benny Malengier
  • Ghent University, Faculty of Engineering and Architecture, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamrat Tesfaye
  • Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar, Ethiopia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Izabela Ciesielska-Wrobel
  • Ghent University, Faculty of Engineering and Architecture, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Atiyyah Binti Haji Musa
  • Ghent University, Faculty of Engineering and Architecture, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lieva Van Langenhove
  • Ghent University, Faculty of Engineering and Architecture, Department of Materials, Textiles and Chemical Engineering, Technologiepark 907, 9052 Zwijnaarde, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2020-01-24 | DOI: https://doi.org/10.2478/aut-2019-0076

Abstract

Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials.

Keywords: Ergonomic wear comfort; protective clothing; sportswear; human body movements; evaluation methods

References

  • [1] Li, Y. (2001). The science of clothing comfort. Textile Progress, 31(1-2), 1-135,.Google Scholar

  • [2] Das, A., Alagirusamy, R. (2010). Science in clothing comfort. Woodhead Publishing Limited (Cambridge).Google Scholar

  • [3] Liu, R., Lao, T. T., Xiao Wang, S. (2013). Technical knitting and ergonomical design of 3D seamless compression hosiery and pressure performances in vivo and in vitro. Fibers and Polymers, 14(8), 1391-1399.Google Scholar

  • [4] Velani, N., Wilson, O., Halkon, B. J., Harland, A. R. (2012). Measuring the risk of sustaining injury in sport a novel approach to aid the re-design of personal protective equipment. Applied Ergonomics, 43(5), 883-890.Google Scholar

  • [5] Song, G. (2011). Improving comfort in clothing, (1st ed.). Woodhead Publishing Limited (Cambridge).Google Scholar

  • [6] Bhatia, D., Malhotra, U. (2016). Thermophysiological wear comfort of clothing: an overview. Journal of Textile Science and Engineering, 6(2), 250.Google Scholar

  • [7] Junyan, H.U. (2006). Characterization of sensory comfort of apparel product. Hong Kong Polytechnic University.Google Scholar

  • [8] Bartels, V. T. (2006). Physiological comfort of biofunctional textiles. Current Problem in Dermatology, 33, 51-66.Google Scholar

  • [9] Senthil Kumar, R. (2012). Textiles in sports and leisure. Asian Textile Journal, 21(9), 44-49.Google Scholar

  • [10] Kothari, V. K. (2006). Thermo-physiological comfort characteristics and blended yarn woven fabrics. Indian Journal of Fibre and Textile Research, 31(March), 177-186.Google Scholar

  • [11] Pamuk, O. (2008). Clothing comfort properties in textile industry. New World Sciences Academy, 3(1), 1-6.Google Scholar

  • [12] Kilinc-Balci, F. S. (2011). Testing, analyzing and predicting the comfort properties of textiles. In: Song, G. (Ed.). Improving comfort in clothing. (1st ed.). Woodhead Publishing Limited (Cambridge), pp. 138-162.Google Scholar

  • [13] Gupta, D. (2011). Design and engineering of functional clothing. Indian Journal of Fibre and Textile Research, 36(4), 327-335.Google Scholar

  • [14] Goonetilleke, R., Karwowski, W. (2016). Advances in physical ergonomics and human factors. In: International Conference on Physical Ergonomics and Human Factors, Florida, USA, July 27-31, 2016, p. 489.Google Scholar

  • [15] Li, Y. I., Wong, A. S. W. (2006). Clothing biosensory engineering. (1st ed.). Woodhead Publishing Limited (Cambridge, England).Google Scholar

  • [16] Wang, J., Agarwal, T.-K., Liu, K., Kamalha, E. (2016). Optimization design of cycling clothes’ patterns based on digital clothing pressures. Fibers and Polymers, 17(9), 1522-1529.Google Scholar

  • [17] Gupta, D., Zakaria, N. (2014). Anthropometry, apparel sizing and design. (1st ed.). Woodhead Publishing Limited (Cambridge, England).Google Scholar

  • [18] Patricia Dolez, V. I., Olivier, V. (2018). Advanced characterization and testing of textiles. Elsevier Ltd. (Cambridge).Google Scholar

  • [19] Duffield, R., Cannon, J., King, M. (2010). The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise. Journal of Science and Medicine in Sport, 13(1), 136-140.Google Scholar

  • [20] Colovic, G. (2014). Ergonomics in the garment industry. (1st ed.). Woodhead Publishing Limited (Cambridge).Google Scholar

  • [21] Scataglini, S. (2017). Ergonomics of gesture: effect of body posture and load on human performance.Google Scholar

  • [22] Mital, S. K. A., Kilbom, A. (2000). Ergonomics guidelines and problem solving. (1st ed., vol. 1). Elsevier Science Ltd.Google Scholar

  • [23] Reilly, T. (2010). Ergonomics in sport and physical activity: enhancing performance and improving safety, no. 9.Google Scholar

  • [24] Jin, Z., Chen, D., Yang, Y. (2015). Research of effect of ergonomics on athletic shoes and costume design project. In: International Conference on Education Technology, Management and Humanities Science, 2015, Etmhs, pp. 147-150.Google Scholar

  • [25] Moritz, E. F., Haake, S. (2006). The role of engineering in fatigue reduction. The Engineering of Sport 6, 3(January), 1-440.Google Scholar

  • [26] Pan, N., Sun, G. (2011). Functional textiles for improved performance, protection and health. Woodhead Publishing Limited (Cambridge, England).Google Scholar

  • [27] Kumar, S. (2005). Perspectives in rehabilitation ergonomics. Taylor & Francis (London).Google Scholar

  • [28] Vianna, C., Quaresma, M. (2015). Ergonomic issues related to clothing and body changes of the new elderly women. Procedia Manufacturing, 3(Ahfe), 5755-5760.Google Scholar

  • [29] Venkatraman, P., Tyler, D. (2016). Applications of compression sportswear. In: Hayes S. G., Venkatraman, P. (Eds.). Materials and technology for sportswear and performance apparel. (1st ed.). Taylor & Francis Group (New York), pp. 171-200.Google Scholar

  • [30] Jin, H. (2010). Assessment of men’s tennis clothing: movement and aesthetic analysis. Washington State University.Google Scholar

  • [31] Chunyan, Q., Yue, H. U. (2015). Design of outdoor sports monitoring function cycling Jerseys. European Journal of Business and Social Sciences, 4(2), 180-189.Google Scholar

  • [32] De Raeve, A., Vasile, S. (2016). Adapted performance sportswear. In: Proceedings of the 7th International Conference on 3D Body Scanning Technol. Lugano, Switzerland, 30 Nov.-1 Dec. 2016, pp. 9-15.Google Scholar

  • [33] Hassan, M., Qashqary, K., Hassan, H. A., Shady, E., Alansary, M. (2012). Influence of sportswear fabric properties on the health and performance of athletes. Fibres and Textiles in Eastern Europe, 4(93), 82-88.Google Scholar

  • [34] Bringard, A., Perrey, S., Belluye, N. (2006). Aerobic energy cost and sensation responses during submaximal running exercise - Positive effects of wearing compression tights. International Journal of Sports Medicine, 27(5), 373-378.Google Scholar

  • [35] Hu, J. (2016). Active coatings for smart textiles. Elsevier Ltd (Cambridge).Google Scholar

  • [36] Shishoo, R. (2005). Textiles in sport. Elsevier Ltd (Cambridge, England).Google Scholar

  • [37] Wang, P., McLaren, J., Leong, K. F., and Des Ouches, P. J. (2013). A pilot study: Evaluations of compression garment performance via muscle activation tests. Procedia Engineering, 60(65), 361-366.Google Scholar

  • [38] Holschuh, B., Obropta, E., Buechley, L., Newman, D. (2012). Materials and Textile architecture analyses for mechanical counter-pressure space suits using active materials. In: AIAA Space 2012 Conference & Exposition, p. 18.Google Scholar

  • [39] Peiyuan, Z. (2013). Biofunctional engineering of seamless sportswear. The Hong Kong Polytechnic University.Google Scholar

  • [40] Geršak, J. (2014). Wearing comfort using body motion analysis. Woodhead Publishing Limited.Google Scholar

  • [41] Ashdown, S. P. (2011). Improving body movement comfort in apparel. In: Song, G. (Ed.). Improving comfort in clothing. (1st ed.). Woodhead Publishing Limited (Cambridge), pp. 278-302.Google Scholar

  • [42] Bishop, P. A. (2014). Ergonomics and comfort in protective and sport clothing: a brief review. Journal of Ergonomics, S2(2).Google Scholar

  • [43] Chung, G. S., Lee, D. H. (2005). A study on comfort of protective clothing for firefighters. Environmental Ergonomics, 3, 375-378.Google Scholar

  • [44] Konarska, M., Sołtynski, K., Sudoł-Szopińska, I., Chojnacka, A. (2007). Comparative evaluation of clothing thermal insulation measured in a thermal manikin and on volunteers. Fibres and Textiles in Eastern Europe, 15(2), 73-79.Google Scholar

  • [45] Madeleine, P. (2010). On functional motor adaptations: From the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck-shoulder region. Acta Physiologica, 199(Suppl. 679), 1-46.Google Scholar

  • [46] Williams, W. J., Roberge, R. J., Kim, J.-H., Coca, A. (2011). Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise. Ergonomics, 54(7), 626-635.Google Scholar

  • [47] Mattila, H. R. (2006). Intelligent textiles and clothing. Woodhead Publishing Limited & & CRC Press LLC (Cambridge, England).Google Scholar

  • [48] Madeleine, P., Samani, A., de Zee, M., Kersting, U. (2011). Biomechanical assessments in sports and ergonomics. Theoretical Biomechanics.Google Scholar

  • [49] O’Brien, C., Blanchard, L. A., Cadarette, B. S., Endrusick, T. L., Xu, X, et al. (2011). Methods of evaluating protective clothing relative to heat and cold stress: Thermal manikin, biomedical modeling, and human testing. Journal of Occupational and Environmental Hygiene, 8(10), 588-599.Google Scholar

  • [50] Havenith, G., Holmér, I., Parsons, K. (2002). Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy Building, 34(6), 581-591.Google Scholar

  • [51] Wang, F. (2014). Clothing evaporative resistance : its measurements and application in prediction of heat strain. Department of Design Sciences, Lund University (Sweden).Google Scholar

  • [52] Bartels, V. T. (2011). Improving comfort in sports and leisure wear, no. 2007. Elsevier Masson SAS.Google Scholar

  • [53] Korff, R. (2002). Ergonomic garments.Google Scholar

  • [54] Ozdil, N., Anand, S. (2014). Recent developments in textile materials and products used for activewear and sportwear. Electronic Journal of Textile Technology, 8(3), 68-83.Google Scholar

  • [55] Lovell, D. G., Mason, D. I., Delphinus, E. M., Mclellan, A. C. P. (2011). Do compression garments enhance the active recovery process after high-intensity running? The Journal of Strength and Conditioning Research, 25(12), 3264-3268.Google Scholar

  • [56] Dorman, L. E., Havenith, G. (2007). Examining the impact of protective clothing on range of movement. Loughborough University (Loughborough).Google Scholar

  • [57] Dorman, L., Havenith, G. (2007). The effects of protective clothing and its properties on energy consumption during different activities - literature review. European Journal of Applied Physiology, 105, 463-470.Google Scholar

  • [58] Liu, R., Little, T. (2009). The 5Ps model to optimize compression athletic wear comfort in sports. Journal of Fiber Bioengineering Informatics, 2(1), 41-52.Google Scholar

  • [59] Hes, L. (2008). Non-destructive determination of comfort parameters during marketing of functional garments and clothing. Indian Journal of Fibre and Textile Research, 33(3), 239-245.Google Scholar

  • [60] Ibrahim, F., Usman, J., Yazed, M., Norhamizan, A. (2018). 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences. In: 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences, 2018, vol. 67, pp. 10-13.Google Scholar

  • [61] Wang, Y., Wu, D., Zhao, M., Li, J. (2014). Evaluation on an ergonomic design of functional clothing for wheelchair users. Applied Ergonomics, 45(3), 550-555.Google Scholar

  • [62] Black, S., Kapsali, V., Bougourd, J., Geesin, F. (2005). Fashion and function - factors affecting the design and use of protective clothing. Textiles for Protection, Woodhead Publishing (Cambridge), pp. 60-89.Google Scholar

  • [63] Nasir, S., Troynikov, O., Quintero Rodriguez, C. (2018). Body mapping as a method for design and engineering of functional clothing. In: Textile Bioengineering and Informatics Symposium Proceedings, 2018, pp. 364-369.Google Scholar

  • [64] Arpinar-Avsar, P., Birlik, G., Sezgin, Ö. C., Soylu, A. R. (2013). The effects of surface-induced loads on forearm muscle activity during steering a bicycle. Journal of Sports Science and Medicine, 12, 512-520.Google Scholar

  • [65] Belbasis, A., Fuss, F. K. (2015). Development of next-generation compression apparel. Procedia Technology, 20(July), 85-90.Google Scholar

  • [66] Slater, K. (1977). Comfort properties of textiles. Textile Progress, 9(4), 1-71.Google Scholar

  • [67] Cao, M., Li, Y., Guo, Y., Yao, L., Pan, Z. (2016). Customized Body mapping to facilitate the ergonomic design of sportswear. IEEE Computer Graphics and Applications, 36(6), 70-77.Google Scholar

  • [68] Bassett, R. J., Postle, R., Pan, N. (1999). Experimental methods for measuring fabric mechanical properties: a review and analysis. Textile Research Journal, 69(11), 866-875.Google Scholar

  • [69] Dadi, H. H. (2010). Literature over view of smart textiles. University of Borås (Sweden).Google Scholar

  • [70] Bedek, G., Salaün, F., Martinkovska, Z., Devaux, E., Dupont, D. (2011). Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Applied Ergonomics, 42(6), 792-800.Google Scholar

  • [71] Onofrei, E., Rocha, A. M., Catarino, A. (2012). Investigating the effect of moisture on the thermal comfort properties of functional elastic fabrics. Journal of Industrial Textiles, 42(1), 34-51.Google Scholar

  • [72] Huck, J., Maganga, O., Kim, Y. (2007). Protective overalls: evaluation garment design and fit. International Journal of Clothing Science and Technology, 9(1), 45-61.Google Scholar

  • [73] Bye, E., Labat, K. (2005). An analysis of apparel industry fit sessions. Journal of Textile and Apparel, Technology and Management, 4(3), 1-5.Google Scholar

  • [74] Harrison, D., Fan, Y., Larionov, E., Pai, D. K. (2018). Fitting close-to-body garments with 3D soft body avatars VitalFit. In: 9th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, 2018, pp. 184-189.Google Scholar

  • [75] Sadat, A., Sayem, M., Bednall, A. (2017). A novel approach to fit analysis of virtual fashion clothing. In: 19th edition of the International Foundation of Fashion Technology Institutes Conference (IFFTI 2017), 28 March 2017 - 30 March 2017, The Amsterdam Fashion Institute (AMFI), Amsterdam, pp. 1-28.Google Scholar

  • [76] Fecht, B., Bennett, D. (1992). Robotic mannequin technology for enhanced product testing. In: McBriarty, J., Henry, N. (Eds.). Performance of protective clothing: Fourth Volume, ASTM International (West Conshohocken, PA), 1992, pp. 734-741.Google Scholar

  • [77] Adams, P. S., Keyserling, W. M. (1993). Three methods for measuring range of motion while wearing protective clothing: A comparative study. International Journal of Industrial Ergonomics, 12(3), 177-191.Google Scholar

  • [78] Fan, J., Chan, A. P. (2005). Prediction of girdle’s pressure on human body from the pressure measurement on a dummy. International Journal of Clothing Science and Technology, 17(1), 6-12.Google Scholar

  • [79] Mattmann, C. (2008). Body posture detection using strain sensitive clothing.Google Scholar

  • [80] Eston, R., Reilly, T. (2009). Kinanthropometry and exercise physiology lab manual volume one : anthropometry. Taylor & Francis (London).Google Scholar

  • [81] Sadeghi, R., Mosallanezhad, Z., Nodehi-Moghadam, A., Nourbakhsh, M. R., Biglarian, A., et al. (2015). The reliability of bubble inclinometer and tape measure in determining lumbar spine range of motion in healthy individuals and patients. Physical Treatment Journal, 5(3), 137-144.Google Scholar

  • [82] Barker, R. I., Deaton, A.S., Liston, G. (2009). Human factors performance of a prototype firefighter suit with deployable features. In: Presented at 13th international conference on environmental ergonomics, Boston, MA August 2-7.Google Scholar

  • [83] Ciesielska-wróbel, I., Denhartog, E., and Barker, R. (2017). Measuring the effects of structural turnout suits on firefighter range of motion and comfort. Ergonomics, 60(7), 997-1007.Google Scholar

  • [84] Lockhart, J. M., Bensel, C. K. (1977). The effects of layers of cold weather clothing and type of liner on the psychomotor performance of men. Technical Report NATICK/TR—77/018. US Army Natick Research and Development Command (Natick, MA).Google Scholar

  • [85] Huck, J. (1988). Protective clothing systems: a technique for evaluating restriction. Applied Ergonomics, 19(3), 185-190.Google Scholar

  • [86] Li, Y. (2011). Computer aided clothing ergonomic design for thermal comfort. Sigurnost, 53(1), 29-41.Google Scholar

  • [87] Gidik, H., Ducept, S., Marolleau, A., Salaün, F., Dupont, D. (2017). Influence of textile physical properties and thermohydric behaviour on comfort. Journal of Ergonomics, 7(6), 2-9.Google Scholar

  • [88] Taylor, P., Holmér, I., Elnäs, S. (2007). Physiological evaluation of the resistance to evaporative heat transfer by clothing. no. February 2015, pp. 37-41.Google Scholar

  • [89] Taylor, P., Havenith, G., Heus, R., Lotens, W. A. (2007). Resultant clothing insulation : a function of body movement, posture, wind, clothing fit and ensemble thickness. no. December 2014, pp. 37-41.Google Scholar

  • [90] Taylor, P., Bernard, T., Ashley, C., Trentacosta, J., Kapur, V., et al. (2010). Critical heat stress evaluation of clothing ensembles with different levels of porosity. Ergonomics, 53(8), 1048-1058.Google Scholar

  • [91] Mohamad, G. A. (2015). The role of tests and manikin in defining fabrics thermal characteristics. International Des. Journal, 5(3), 995-1001.Google Scholar

  • [92] Fonseca, G. F. (2015). Dry heat transfer properties of clothing in wind. Textile Research Journal, 45(1), 30-34.Google Scholar

  • [93] Holmér, I. (2004). Thermal manikin history and applications. European Journal of Applied Physiology, 92(6), 614-618.Google Scholar

  • [94] Holmér, I. (2000). Thermal manikins in research and standards. National Institute for Working Life (Sweden).Google Scholar

  • [95] Fan, J., Chen, Y. S., Zhang, W. (2005). Clothing thermal insulation when sweating and when non-sweating. Elsevier Ergonomics Book Series, 3(C), 437-443.Google Scholar

  • [96] McCullough, E. A. (2005). The use of thermal manikins to evaluate clothing and environmental factors. Elsevier Ergonomics Book Series, 3(C), 403-407.Google Scholar

  • [97] Yarborough, P., Nelson, C. (2005). Performance of protective clothing: global needs and emerging markets: 8th symposium. ASTM International.Google Scholar

  • [98] Jie, Y., Wenguo, W., Ming, F. U. (2014). Coupling of a thermal sweating manikin and a thermal model for simulating human thermal response. Procedia Engineering, 84, 893-897.Google Scholar

  • [99] Fukazawa, T., Lee, Æ. G., and Matsuoka, Æ. T. (2004). Heat and water vapour transfer of protective clothing systems in a cold environment, measured with a newly developed sweating thermal manikin. European Journal of Applied Physiology, 92(6), 645-648.Google Scholar

  • [100] Nayak, R., Padhye, R. (2017). Manikins for textile evaluation. Elsevier Ltd (Cambridge).Google Scholar

  • [101] Oliveira, A. V. M., Gaspar, A. R., Quintela, D. A. (2011). Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode. Applied Ergonomics, 42(6), 890-899.Google Scholar

  • [102] Kaplan, S., Okur, A. (2009). Subjective evaluation methods and physiological measurements used to determine clothing thermal comfort. In: 2009 14th National Biomedical Engineering Meeting, Balcova, Izmir, Turkey, 20-22 May 2009, pp. 1-5.Google Scholar

  • [103] Li, Y. (2011). The science of clothing comfort. Textile Progress, 31(1-2), 1-35.Google Scholar

  • [104] Wang, F., Del Ferraro, S., Molinaro, V., Morrissey, M., Rossi, R. (2014). Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode. International Journal of Biometeorology, 58(7), 1673-1682.Google Scholar

  • [105] Kaplan, S., Okur, A. (2012). Thermal comfort performance of sports garments with objective and subjective measurements. Indian Journal of Fibre and Textile Research, 37(1), 46-54.Google Scholar

  • [106] Karlsson, I. C. M., Rosenblad, E. F. S. (1998). Evaluating functional clothing in climatic chamber tests versus field tests: A comparison of quantitative and qualitative methods in product development. Ergonomics, 41(10), 1399-1420.Google Scholar

  • [107] Kaplan, S., Okur, A. (2007). The meaning and importance of clothing comfort. Journal of Sensory Studies, 23(232), 688-706.Google Scholar

  • [108] Li, M., Li, D. P., Zhang, W. Y., Tang, X. Z. (2009). A multiple regression model for predicting comfort sensation of knitted fabric in sports condition based on objective properties. In: 2009 2nd International Conference on Information and Computing Science ICIC 2009, vol. 3, pp. 372-375.Google Scholar

  • [109] Wu, H. Y., Li, J., Zhang, W. Y. (2009). Study on improving the thermal-wet comfort of clothing during exercise with an assembly of fabrics. Fibres and Textiles in Eastern Europe, 17(4), 46-51.Google Scholar

  • [110] Ho, S. S., Yu, W., Lao, T. T., Chow, D. H. K., Chung, J. W., et al. (2008). Comfort evaluation of maternity support garments in a wear trial. Ergonomics, 51(9), 1376-1393.Google Scholar

  • [111] Wang, Y., Cui, Y., Zhang, P., Feng, X., Shen, J., et al. (2011). A smart mannequin system for the pressure performance evaluation of compression garments. Textile Research Journal, 81(11), 1113-1123.Google Scholar

  • [112] Gill, S. (2016). Body scanning and its influence on garment development. In: Hayes. S. G., Venkatraman, P. (Eds.). Materials & technology for sportswear and performance apparel. Taylor & Francis Group (New York). pp. 325-340.Google Scholar

  • [113] Al Khaburi, J., Dehghani-sanij, A. A., Nelson, E. A., Hutchinson, J. (2014). Measurement of interface pressure applied by medical compression bandages. August 2011.Google Scholar

  • [114] Harlock, S. C., Ng, S. P., Yu, W., Fan, J. (2006). Innovation and technology of women’s intimate apparel. Woodhead Publishing Limited (Cambridge, England).Google Scholar

  • [115] Anttonen, H., Niskanen, J., Meinander, H., Bartels, V., Kuklane, K., et al., (2004). Thermal manikin measurements—exact or not? International Journal of Occupational Safety and Ergonomics, 10(3), 291-300.Google Scholar

  • [116] Sardjono, C. T., et al., Review on the value of graduated elastic compression stockings after deep vein thrombosis. Thrombosis and Haemostasis, 96(6), 756-766.Google Scholar

  • [117] Rothmaier, M., Clemens, F. (2008). Textile pressure sensor made of flexible plastic optical fibers. EMPA Act., no. 2008-2009, p. 55.Google Scholar

  • [118] Wang, Y., Zhang, P., Feng, X., Yao, Y. (2010). New method for investigating the dynamic pressure behavior of compression garment. International Journal of Clothing Science and Technology, 22(5), 374-383.Google Scholar

  • [119] Nakahashi, M., Morooka, H., Nakamura, N., Yamamoto, C., Morooka, H. (2005). An analysis of waist-nipper factors that affect subjective feeling and physiological response-for the design of comfortable women’s foundation garments. Fiber, 61(1), 6-12.Google Scholar

  • [120] Allsop, C. A. (2012). An evaluation of base layer compression garments for sportswear. Manchester Metropolitan University.Google Scholar

  • [121] Falcão, T. A. C. (2017). Advances in human factors in wearable technologies and game design. In: International Conference on Advances in Human Factors and Wearable Technologies, 2017, p. 276.Google Scholar

  • [122] Khodasevych, I., Troynikov, O., Parmar, S. (2017). Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders. Photonic Sensors, 1(17), 1-18.Google Scholar

  • [123] Tekscan. (2003). Tekscan Pressure Measurement System. South Boston.Google Scholar

  • [124] Venkatraman, P. D., Tyler, D. J. (2013). Performance of compression garments for cyclists. In: The textile institute’s international conference on advances in functional textiles, 2013, pp. 1-32.Google Scholar

  • [125] Electronica, M. (2014). PicoPress Technical manual Rev.6. Italy, 2014, pp. 1-11.Google Scholar

  • [126] Sioson, E., Alexander, J. J., Mentari, A., Heitz, R., Mion, L. (1992). Effect of elastic compression stockings on venous hemodynamics in hemiplegic patients. Journal of Stroke and Cerebrovascular Diseases, 2(4), 196-201.Google Scholar

  • [127] Duffield, R., Portus, M. (2007). Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players. British Journal of Sports Medicine, 41(7), 409-414.Google Scholar

  • [128] Yeung, K. W., Li, Y., Zhang, X. (2004). A 3D biomechanical human model for numerical simulation of garment-body dynamic mechanical interactions during wear. Journal of the Textile Institute Part 1 Fibre Science and Textile Technology, 95(1-6), 59-79.Google Scholar

  • [129] Nilsson, H. O., Holmer, I. (2003). Comfort climate evaluation with thermal manikin methods and computer simulation models. Indoor Air, 13(1), 28-37.Google Scholar

  • [130] Tang, K. P. M., Kan, C. W., Fan, J. T. (2014). Evaluation of water absorption and transport property of fabrics. Textile Progress, 46(1), 1-132.Google Scholar

  • [131] Rossi, M., Niedermann, R. (2012). Objective and subjective evaluation of the human thermal sensation of wet fabrics. Textile Research Journal, 82(4), 374-384.Google Scholar

  • [132] Yu, W. (2004). Objective evaluation of clothing fit. In: Fan, J., Yu, W. W.-M., Yu, W., Hunter, L. (Eds.), Clothing appearance and fit: science and technology, Woodhead Publishing Limited (Cambridge), pp. 72-88.Google Scholar

  • [133] Konstantinos, S. (2015). Assessment methods for comfort of consumer products at early stages of the development process. DTU Management Engineering.Google Scholar

  • [134] Li, Y., Dai, X.-Q. (2006). Textile biomechanical engineering. In: Li, Y., Dai, X. Q. (Eds.). Biomechanical engineering of textiles and clothing. (1st ed.). Woodhead Publishing Limited & CRC Press LLC (Cambridge, England), pp. 1-16.Google Scholar

  • [135] Kanakaraj, P., Ramachandran, R. (2015). Active knit fabrics - functional needs of sportswear application. Journal of Textile and Apparel, Technology and Management, 9(2), 1-11.Google Scholar

  • [136] Schmidt, A., Paul, R., Classen, E., Morlock, S., Beringer, J. (2016). Comfort testing and fit analysis of military textiles. In: Wang, L. (Ed.). Performance Testing of Textiles: Methods, Technology and Applications. (1st ed.). Elsevier Ltd (Cambridge), pp. 25-37.Google Scholar

  • [137] Lim, J., Choi, H., Roh, E. K., Yoo, H., Kim, E. (2015). Assessment of airflow and microclimate for the running wear jacket with slits using CFD simulation. Fashion and Textiles, 2(1), 1-13.Google Scholar

  • [138] Naumann, A., Roetting, M. (2007). Digital human modeling for design and evaluation of human-machine systems. MMI-Interaktiv, 12, pp. 27-35.Google Scholar

About the article

Published Online: 2020-01-24


Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0076.

Export Citation

© 2019 Yetanawork Teyeme et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in