Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
See all formats and pricing
More options …

Surface Characteristics of Seersucker Woven Fabrics

Malgorzata Matusiak
  • Corresponding author
  • Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz University of Technology, Lodz, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Bajzik
  • Department of Textile Evaluation, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2020-02-13 | DOI: https://doi.org/10.2478/aut-2019-0079


The surface characteristics of fabrics are important from the point of view of the sensorial comfort of clothing users. Surface friction and surface roughness are the most important surface parameters of fabrics. These parameters can be measured using different methods, the most important and well-accepted method being that using the Kawabata evaluation system (KES)-FB4 testing instrument. In this work, the surface roughness and surface friction of the seersucker woven fabric have been determined using the KES-FB4. However, the measurement procedure needs modification. On the basis of the results, the influence of the repeat of the seersucker effect and the linear density of the weft yarn on the surface parameters has been determined.

Keywords: Seersucker woven fabrics; surface friction; surface roughness; KES-FB4; measurement


  • [1] Rossi, R. (2005). Interaction between protection and thermal comfort. In: Scott, A. (Ed.). Textiles for Protection. Woodhead Publishing Ltd. (Cambridge, England). pp. 233-260.Google Scholar

  • [2] Moorthy, R. R., Kandhavadivu, P. (2015). Surface friction characteristics of woven fabrics with nonconventional fibers and their blends. Journal of Textile and Apparel Technology and Management, 9(3), 1-14.Google Scholar

  • [3] Carr, W. W., Posey, J. E., Tincher, W.C. (2007). Frictional characteristics of apparel fabrics. Textile Research Journal, 59(3), 129-136.Google Scholar

  • [4] Mooneghi, S. A., Saharkhiz, S. S., Varkiani, M. H. (2014). Surface roughness evaluation of textile fabrics: A literature review. Journal of Engineered Fibers and Fabrics, 9(2). Available at: http://www.jeffjournal.org.

  • [5] Frącczak, Ł., Matusiak, M., Zgórniak, P. (2019). Investigation of friction coefficient of seersucker woven fabrics. Fibres and Textiles in Eastern Europe, Vol. 27 3(135), 36-42.Google Scholar

  • [6] Lima, M., Hes, L., Vasconcelos, R., Martins, J. (2005). FRICTORQ, accessing fabric friction with a novel fabric surface tester. Autex Research Journal, 5(4), 194-201.Google Scholar

  • [7] Fracczak, L., Matusiak, M. (2017). Investigation of surface friction of the seersucker fabrics. In: Frydrych, I., Bartkowiak, G., Pawłowa, M. (Eds.). Innovations in clothing 3D design, products, fashion, technologies and testing of clothing materials. Lodz University of Technology (Lodz). pp. 235-249.Google Scholar

  • [8] Kawabata, S. (1980). The standardization and analysis of hand evaluation (2nd ed.). The Hand Evaluation and Standardization Committee, The Textile Machinery Society of Japan (Osaka).Google Scholar

  • [9] Greenwood, J.A. (1984). A unified theory of surface roughness. Proceedings of Royal Society, London, A393, 33.Google Scholar

  • [10] Semnani, D., Hasani, H., Behtaj, S., Ghorbani, E. (2011). Surface roughness measurement of weft knitted fabrics using image processing. Fibres and Textiles in Eastern Europe, 19(3), 86.Google Scholar

  • [11] Sul, I. H., Hong, K. H., Shim, H., Kang, T.J. (2006). Surface roughness measurement of nonwovens using three-dimensional profile data. Textile Research Journal, 76(11), 828-834.Google Scholar

  • [12] Militky, J., Mazal, M. (2007). Image analysis method of surface roughness evaluation. International Journal of Clothing Science and Technology, 19(34), 186-193.Google Scholar

  • [13] Gupta, B. S., Ajayi, J. O., Kutsenko, M. (2008). Experimental methods for analysing friction in textiles. In: Gupta, B. S. (Ed.). Friction in textile materials. Woodhead Publishing Limited (Cambridge, England). pp. 174-221.Google Scholar

  • [14] Savvas, G. V., Provatidis, C. G. (2004). Structural characterization of textile fabrics using surface roughness data. International Journal of Clothing Science and Technology, 16(5), 445.Google Scholar

  • [15] Krucińska, I., Konecki, W., Michalak, M. (2006). Measurement systems in textile industry (in Polish). Lodz University of Technology (Lodz). pp. 252-329.Google Scholar

  • [16] Carrera-Gallissà, E., Capdevila, X., Escusa, M. (1951). Assessing friction in silk-like finished polyester fabrics. The Journal of the Textile Institute, 109(1), 113-120.Google Scholar

  • [17] Bowden, F. P., Tabor, D. (1951). Friction and lubrication of solids. American Journal of Physics, 19, 428.Google Scholar

  • [18] Frącczak, Ł., Matusiak, M. Influence of the structure of seersucker woven fabrics on their friction properties. Autex Research Journal (In press – accepted for publication).Google Scholar

About the article

Published Online: 2020-02-13

Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0079.

Export Citation

© 2019 Malgorzata Matusiak et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in