Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Open Access
Online
ISSN
2300-0929
See all formats and pricing
More options …

Investigation of Textile Heating Element in Simulated Wearing Conditions

Laimutė Stygienė
  • Department of Technological Development of Textile, Center for Physical Sciences and Technology (FTMC), Demokratų str. 53, Kaunas, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandra Varnaitė-Žuravliova
  • Corresponding author
  • Department of Textiles Physical-Chemical Testing, Center for Physical Sciences and Technology (FTMC), Demokratų str. 53, Kaunas, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aušra Abraitienė
  • Department of Textile Technologies, Center for Physical Sciences and Technology (FTMC), Demokratų str. 53, Kaunas, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ingrida Padleckienė
  • Department of Textile Technologies, Center for Physical Sciences and Technology (FTMC), Demokratų str. 53, Kaunas, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sigitas Krauledas
  • Department of Textile Technologies, Center for Physical Sciences and Technology (FTMC), Demokratų str. 53, Kaunas, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2020-02-07 | DOI: https://doi.org/10.2478/aut-2019-0080

Abstract

The research was focused on the heating capacity of developed, isolated from water penetration, knitted textile heating element with incorporated conductive silver (Ag)- plated yarns, which can be used in manufacturing heating textile products intended for recreation, sports, or health care for elderly. The aim of the investigation was to obtain an appropriate temperature on a human skin, generated by the textile heating element surface at a lower voltage depending on a variety of wearing conditions indoor. Depending on the supplied voltage to the heating element, an incoming electric energy can be converted into different heat. Therefore, the electrical and achieved temperature parameters of heating elements are very important by selecting and adapting required power source devices and by setting the logical parameters of programmable controllers. The heating–cooling dynamic process of developed textile heating element was investigated at different simulated wearing conditions on a standard sweating hot plate and on a human skin at applied voltages of 3V and 5V. It was discovered that a voltage of 5 V is too big for textile heating elements, because the reached steady state temperature increases to approximately 39–40°C, which is too hot for contact with the human skin. The voltage of 3 V is the most suitable to work properly and continuously, i.e., to switch on when the adjusted temperature is too low and to turn off when the necessary temperature is reached. Based on the values of reached steady-state heating temperature, the influence of the applied voltage, ambient air flow velocity, and heating efficiency, depending on various layering of clothes, was determined. Recorded temperatures on the external surface of the heating element provided the possibility to assess its heat loss outgoing into the environment. It was suggested that heat loss can be reduced by increasing thermal insulation properties of the outer layer of the heating element or using layered clothing. On the basis of the resulted heating characteristics, recommended parameters of power source necessary for wearable textile heating element were defined.

Keywords: Textile heating element; heating efficiency; thermocouple sensors; temperature parameters

References

  • [1] CEN/TR 16298: 2011. Textiles and textile products – Smart textiles – Definitions, categorization, application and standardization needs.Google Scholar

  • [2] Stoppa, M., Chiolerio, A. (2014). Wearable electronics and smart textiles: a critical review. Sensors, 14(7), 11957-11992.Google Scholar

  • [3] De Mey, G., Özçelik, M., Schwarz, A., Kazani, I., Hertleer, C., et al. (2014). Designing of conductive yarn knitted thermal comfortable shirt using battery operated heating system. Journal of Textile and Apparel/Tekstil ve Konfeksiyon, 24(1), 26-29.Google Scholar

  • [4] Strazdienė, E., Dobilaitė, V. (2007). Techninės Tekstilės gaminiai ir protingoji apranga. Šiauliai: VŠĮ Šiaulių universiteto leidykla, Lithuania, p. 168, DOI: 10.5755/e01.9786090204634.CrossrefGoogle Scholar

  • [5] Vargas, S. C. (2009). Smart Clothes - Textilien mit Elektronik. Was bietet der Markt der Intelligenten Bekleidung? Hamburg Diplomica® Verlag GmbH, p. 314, ISBN: 978-3-8366-7230-6.Google Scholar

  • [6] Šahta, I., Baltina, I., Truskovska, N., Blums, J., Deksnis, E. (2014). High performance and optimum design of structures and materials. 137, 91-102, DOI: 10.2495/HPSM140091.CrossrefGoogle Scholar

  • [7] Hamdani, S. T. A., Potluri, P., Fernando, A. (2013). Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn. Materials, 6(3), 1072-1089.Google Scholar

  • [8] Locher, I. (2006). Technologies for system-on-textile integration, Doctoral thesis, ETH No. 16467, Swiss Federal Institute of Technology: Zürich, p. 121, DOI: 10.3929/ethz-a-005135763.Google Scholar

  • [9] Sezgin, H., Bahadir, S. K., Boke, Y. E., Kalaoglu, F. (2012). Effect of different conductive yarns on heating behaviour of fabrics. In: PMUTP International Conference: Textile ---amp--- Fashion, Access to Internet: http://textileconference.rmutp.ac.th/wp-content/uploads/2012/10/009-Effect-of-Different-Conductive-Yarns-on-Heating-Behaviour-of-Fabrics.pdf.

  • [10] Ding, J. T. F., Tao, X., Au, W. M., Li, L. (2014). Temperature effect on the conductivity of knitted fabrics embedded with conducting yarns. Textile Research Journal, 84(17), 1849-1857.Google Scholar

  • [11] Roell, F. (1996). U.S. Patent No. 5,484,983. U.S. Patent and Trademark Office (Washington, DC).Google Scholar

  • [12] Lee Sandbach, D., Burkitt, J., Walkington, S. M., Crispin, P. G. (2008). Knitted sensor. United States Patent Application Publication–2008.-Nr US, 7377133.Google Scholar

  • [13] Petcu, I., Agrawal, P., Curteza, A., Visser, R., Brinks, G. et al. (2012). In 12th AUTEX World Textile Conference, Faculty of Textile Technology of the University of Zagreb.Google Scholar

  • [14] Poboroniuc, M. S., Curteza, A., Cretu, V., Macovei, L. (2014). Designing wearable textile structures with embeded conductive yarns and testing their heating properties. In: International Conference and Exposition on Electrical and Power Engineering (EPE), p. 778. DOI: 10.1109/ICEPE.2014.6970016.CrossrefGoogle Scholar

  • [15] Mečnika, V., Hoerr, M., Krivinš, I., Schwarz, A. (2014). In rural environment. Education. Personality (REEP) Proceedings of the International Scientific Conference (Latvia). Latvia University of Agriculture.Google Scholar

  • [16] Kayacan, O., Bulgun, E. Y. (2009). Heating behaviors of metallic textile structures. International Journal of Clothing Science and Technology, 21(2/3), 127-136.Google Scholar

  • [17] Ohgushi, K., Hijiri, M., Kitazawa, Z. (1991). U.S. Patent No. 4,983,814. U.S. Patent and Trademark Office (Washington, DC).Google Scholar

  • [18] Tao, X. (2004). Wearable electronics and photonics. Woodhead Publishing, p. 256. ISBN 978-1-85573-605-4.Google Scholar

  • [19] Bai, Y., Li, H., Gan, S., Li, Y., Liu, H., Chen, L. (2018). Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics. Measurement, 122, p. 192-200.Google Scholar

  • [20] Pan, N., Gibson, P. (Eds.). (2006). Thermal and moisture transport in fibrous materials. Woodhead Publishing Series in Textiles No. 56 (Cambridge, England). p. 632, ISBN: 9781845690571.Google Scholar

  • [21] Koralewski, H. E. (2006). Energiehaushalt und Temperaturregulation. Berlin, Charité Bioinformatic SS Cluster B4, 1. Access in internet: https://klinphys.charite.de/bioinfo/2_p-skripten/b4_b_waermehaushalt.pdf.

  • [22] Wiezlak, W., Zielinski, J. (1993). Clothing heated with textile heating elements. International Journal of Clothing Science and Technology, 5(5), 9.Google Scholar

  • [23] Woods, K., Bishop, P., Jones, E. (2007). Warm-up and stretching in the prevention of muscular injury. Sports Medicine, 37(12), 1089-1099.Google Scholar

  • [24] McCann, J. (2013). Smart protective textiles for older people. In Book smart textiles for protection. Woodhead Publishing Series in Textiles Woodhead Publishing Limited, pp. 253-273.Google Scholar

  • [25] Palamutcu, S., Goren, I. (2015). Functional textile preferences of elderly people. Mediterranean Journal of Social Sciences. 6(2S5), 279-285.Google Scholar

  • [26] EN ISO 11092: 2014. Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hot plate test).Google Scholar

  • [27] Varnaitė-Žuravliova, S., Baltušnikaitė-Guzaitienė, J., Valasevičiūtė, L., Verbienė, R., Abraitienė, A. (2016). Assessment of electrical characteristics of conductive woven fabrics. American Journal of Mechanical and Industrial Engineering, 1(3), 38-49.Google Scholar

  • [28] Filter components customer info 23 SEFAR. Access via internet: https://www.sefar.com/data/docs/en/5662/SFPDF-Smart-Fabrics-CI-23-PowerHeat-EN.pdf?v=1.2.

  • [29] Kayacan, O., Bulgun, E., Sahin, O. (2008). Implementation of steel-based fabric panels in a heated garment design. Textile Research Journal, 79(16), 1427-1437.Google Scholar

  • [30] Wang, F., Gao, C., Kuklane, K., Holmer, I. (2010). The review of technology of personal heating garments. International Journal of Occupational Safety and Ergonomics (JOSE), 16(3), p. 387-404.Google Scholar

  • [31] Babus’Haq, R. F., Hiasat, M. A. A., Probert, S. D. (1996). Thermally insulating behaviour of single and multiple layers of textiles under wind assault. Applied Energy, 54(4), 375-391.Google Scholar

About the article

Published Online: 2020-02-07


Citation Information: Autex Research Journal, ISSN (Online) 2300-0929, DOI: https://doi.org/10.2478/aut-2019-0080.

Export Citation

© 2019 Laimutė Stygienė et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in