Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology
]

Editor-in-Chief: Jumar, Ulrich

12 Issues per year


IMPACT FACTOR 2017: 0.503

CiteScore 2017: 0.47

SCImago Journal Rank (SJR) 2017: 0.212
Source Normalized Impact per Paper (SNIP) 2017: 0.546

Online
ISSN
2196-677X
See all formats and pricing
More options …
Volume 62, Issue 7

Issues

Model Order Reduction for Systems with Moving Loads

Modellordnungsreduktion für Systeme mit bewegten Lasttermen

Norman Lang / Jens Saak / Peter Benner
Published Online: 2014-06-28 | DOI: https://doi.org/10.1515/auto-2014-1095

Abstract

In this contribution we present two approaches allowing to find a reduced order approximant of a full order model featuring a moving load term. First, we apply the Balanced Truncation (BT) method to a switched linear system (SLS) using the special structure given in the spatially discretized model. The second approach treats the variability as a continuous parameter dependence and uses the iterative rational Krylov algorithm (IRKA) to compute a parameter preserving reduced order model.

Zusammenfassung

In diesem Beitrag werden zwei Ansätze vorgestellt, welche es erlauben, ein reduziertes Modell eines Originalsystems mit beweglichem Lastterm zu bestimmen. Der erste Ansatz verwendet die Methode des balancierten Abschneidens (BT) zur Reduktion eines geschalteten, linearen Systems (SLS), welches sich aus der speziellen diskreten Struktur des Modells ergibt. Der zweite Ansatz behandelt die Variabilität als eine stetige Parameterabhängigkeit und verwendet den iterativen, rationalen Krylov Algorithmus (IRKA) zur Berechnung eines parametererhaltenden, reduzierten Modells.

Schlagwörter: Modellordnungsreduktion; parametrisch; linear zeitinvariante Systeme; geschaltete lineare Systeme

Keywords: Model order reduction; parametric; linear time invariant systems; switched linear systems

About the article

Norman Lang

Dipl.-Math. techn. Norman Lang is a research assistant at the Fakultät für Mathematik at the Technische Universität Chemnitz. His research interests include optimal control with applications on inverse problems, (parameter preserving) model order reduction and the solution of large-scale matrix equations (in particular the differential Riccati and Lyapunov equations).

Technische Universität Chemnitz, Fakultät für Mathematik, Mathematik in Industrie und Technik, Reichenhainerstr 39/41, D-09126 Chemnitz

Jens Saak

Dr. Jens Saak is a postdoctoral researcher in the Computational Methods in Systems and Control group at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg. His fields of research include the solution of large-scale and sparse matrix equations, model order reduction, the investigation of numerical methods in optimal control of partial differential equations, as well as, the scientific and high performance computing aspects of the above.

Max Planck Institute Magdeburg, Computational Methods in Systems and Control Theory, Sandtorstr 1, D-39106 Magdeburg

Peter Benner

Prof. Dr. Peter Benner is one of the directors and head of the Computational Methods in Systems and Control group at the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg. His research activities include numerical linear algebra, model reduction and systems approximation, parallel algorithms, linear quadratic optimization, robust stabilization of linear and non-linear systems and control of instationary PDEs.

Max Planck Institute Magdeburg, Computational Methods in Systems and Control Theory, Sandtorstr. 1, D-39106 Magdeburg


Accepted: 2014-05-14

Received: 2014-02-18

Published Online: 2014-06-28

Published in Print: 2014-07-28


Citation Information: at - Automatisierungstechnik, Volume 62, Issue 7, Pages 512–522, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2014-1095.

Export Citation

©2014 Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
I. V. Gosea, M. Petreczky, and A. C. Antoulas
SIAM Journal on Scientific Computing, 2018, Volume 40, Number 2, Page B572
[2]
Daniela Oetinger, Eckhard Arnold, and Oliver Sawodny
Production Engineering, 2017
[3]
Michael Baumann, Alexander Vasilyev, Tatjana Stykel, and Peter Eberhard
Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2017, Volume 231, Number 1, Page 48
[4]
Andreas Naumann, Norman Lang, Marian Partzsch, Michael Beitelschmidt, Peter Benner, Axel Voigt, and Jörg Wensch
Production Engineering, 2016, Volume 10, Number 3, Page 253
[5]
Tatjana Stykel and Alexander Vasilyev
Journal of Computational and Applied Mathematics, 2016, Volume 297, Page 85

Comments (0)

Please log in or register to comment.
Log in