Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology
]

Editor-in-Chief: Jumar, Ulrich


IMPACT FACTOR 2018: 0.500

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.532

Online
ISSN
2196-677X
See all formats and pricing
More options …
Volume 66, Issue 10

Issues

Step-based evolution support among networked production automation systems

Unterstützung von Evolutionsschritten zwischen vernetzten Produktionsmaschinen

Christopher Haubeck
  • Distributed Systems and Information Systems, University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heiko Bornholdt
  • Distributed Systems and Information Systems, University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Winfried Lamersdorf
  • Distributed Systems and Information Systems, University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abhishek Chakraborty / Alexander Fay
  • Corresponding author
  • Automation Technology Institute, Helmut-Schmidt-University, Holstenhofweg 85, 22043 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-17 | DOI: https://doi.org/10.1515/auto-2018-0047

Abstract

Production systems are no longer rigid, unyielding, and isolated systems anymore. They are rather interconnected cyber-physical systems with an evolution process that needs to be supported. To enable reusability in evolution, a change-first cooperative support is proposed that relies on model-based evolution steps. The approach establishes a network-wide evolution process in a peer-to-peer networked community. Thus, moving towards decentralised marketplaces for evolution steps.

Zusammenfassung

Produktionssystem sind schon lange nicht mehr starre und isolierte Systeme, sondern entwickeln sich zu verbundenen Cyber-Physikalischen Systemen, die dem ständigen Wandel ihrer Evolution ausgesetzt sind. Um Änderungen als zentrale Bausteine der Evolution zu etablieren, werden modellbasierte Evolutionsschritte vorgestellt. Diese sollen einen kooperativen Evolutionsprozess unterstützen, der als Grundlage für maschinenzentrierte, dezentrale Informationsmarktplätze dienen soll.

Keywords: cooperative evolution; model-based knowledge sharing; cyber-physical production system; peer-to-peer network; blockchain

Schlagwörter: kooperative Evolutionsunterstützung; modellbasierter Evolutionsschritte; Cyber-Physikalische Produktionssysteme; Peer-to-Peer Netzwerk; Blockchain

References

  • 1.

    Christopher Haubeck, Winfried Lamersdorf and Alexander Fay, A Knowledge Carrying Service-Component Architecture for Smart Cyber Physical Systems: An Example based on self-documenting production systems, in: Int. Works. on Engineering Service-Oriented Applications and Cloud Services, 2018.Google Scholar

  • 2.

    Birgit Vogel-Heuser, Stefan Feldmann, Jens Folmer, Jan Ladiges, Alexander Fay, Sascha Lity, Matthias Tichy, Matthias Kowal, Ina Schaefer, Christopher Haubeck and et al., Selected challenges of software evolution for automated production systems, in: Int. Conf. on Industrial Informatics, pp. 314–321, IEEE, 2015.Google Scholar

  • 3.

    Michael W. Godfrey and Daniel M. German, The past, present, and future of software evolution, in: Frontiers of Software Maintenance, pp. 129–138, IEEE, 2008.Google Scholar

  • 4.

    Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani and Nico Tanzarella, Delta-oriented programming of software product lines, in: Int. Conf. on Software Product Lines, pp. 77–91, Springer, 2010.Google Scholar

  • 5.

    Jan Ladiges, Christopher Haubeck, Alexander Fay and Winfried Lamersdorf, Evolution management of production facilities by semi-automated requirement verification, at-Automatisierungstechnik 62(11) (2014), 781–793.Web of ScienceGoogle Scholar

  • 6.

    Ursula Goltz, Ralf H. Reussner, Michael Goedicke, Wilhelm Hasselbring, Lukas Märtin and Birgit Vogel-Heuser, Design for future: managed software evolution, Computer Science-Research and Development 30(3–4) (2015), 321–331.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Jan Ladiges, Alexander Fülber, Esteban Arroyo, Alexander Fay, Christopher Haubeck and Winfried Lamersdorf, Learning material flow models for manufacturing plants from data traces, in: Int. Conf. on Industrial Informatics, pp. 294–301, IEEE, 2015.Google Scholar

  • 8.

    Jan Ladiges, Alexander Fay and Winfried Lamersdorf, Automated Determining of Manufacturing Properties and Their Evolutionary Changes from Event Traces, Intelligent Industrial Systems 2(2) (2016), 163–178.CrossrefGoogle Scholar

  • 9.

    Timo Kehrer, Udo Kelter and Gabriele Taentzer, A rule-based approach to the semantic lifting of model differences in the context of model versioning, in: Int. Conf. on Automated Software Engineering, pp. 163–172, IEEE, 2011.Google Scholar

  • 10.

    Timo Kehrer, Calculation and Propagation of Model Changes Based on User-level Edit Operations: A Foundation for Version and Variant Management in Model-driven Engineering, in: Ph. D. Thesis, University of Siegen, Germany, 2015.Google Scholar

  • 11.

    Timo Kehrer, Udo Kelter and Gabriele Taentzer, Consistency-preserving edit scripts in model versioning, in: Int. Conf. on Automated Software Engineering, pp. 191–201, IEEE, 2013.Google Scholar

  • 12.

    Udo Kelter, Timo Kehrer and Dennis Koch, Patchen von Modellen, in: Software Engineering, pp. 171–184, Citeseer, 2013.Google Scholar

  • 13.

    Abhishek Chakraborty, Christopher Haubeck, Alexander Fay and Winfried Lamersdorf, Signal-based Context Comparative Analysis for Identification of Similar Manufacturing Modules, in: 16th Symposium on Information Control Problems in Manufacturing, 2018.Google Scholar

  • 14.

    Jay Lee, Behrad Bagheri and Hung-An Kao, Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics, in: Int. Conf. on Industrial Informatics, pp. 1–6, 2014.Google Scholar

  • 15.

    Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid and Günter Kniesel, Towards a taxonomy of software change, J. of Software: Evolution and Process 17(5) (2005), 309–332.Google Scholar

  • 16.

    B. Otto, S. Lohmann, S. Auer, G. Brost, J. Cirullies, A. Eitel, T. Ernst, C. Haas, M. Huber, C. Jung and et al., Reference architecture model for the Industrial Data Space, Fraunhofer-Gesellschaft (2017).Google Scholar

  • 17.

    Michael Mainelli and Mike Smith, Sharing ledgers for sharing economies: an exploration of mutual distributed ledgers (aka blockchain technology), (2015).

  • 18.

    Stefan Feldmann, Julia Fuchs and Birgit Vogel-Heuser, Modularity, variant and version management in plant automation–future challenges and state of the art, in: Int. Design Conf., 2012.Google Scholar

  • 19.

    Birgit Vogel-Heuser, Christoph Legat, Jens Folmer and Stefan Feldmann, Researching evolution in industrial plant automation: Scenarios and documentation of the pick and place unit, Institute of Automation and Information Systems, TU München, Report, 2014.Google Scholar

  • 20.

    Christopher Haubeck, Alexander Pokahr, Winfried Lamersdorf, Abhishek Chakraborty, Jan Ladiges and Alexander Fay, Evolution of cyber-physical production systems supported by community-enabled experiences, in: Int. Conf. on Industrial Informatics, pp. 867–874, IEEE, 2017.Google Scholar

  • 21.

    Ethan Buchman, Tendermint: Byzantine fault tolerance in the age of blockchains, in: Ph. D. Thesis, The University of Guelph, 2016.Google Scholar

  • 22.

    Igor Buzhinsky and Valeriy Vyatkin, Automatic inference of finite-state plant models from traces and temporal properties, Transactions on Industrial Informatics 13(4) (2017), 1521–1530.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Dimitri Lefebvre and Edouard Leclercq, Stochastic Petri net identification for the fault detection and isolation of discrete event systems, Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 41(2) (2011), 213–225.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Martin Strube, Stefan Runde, Helmut Figalist and Alexander Fay, Risk minimization in modernization projects of plant automation—a knowledge-based approach by means of semantic web technologies, in: Conf. on Emerging Technologies & Factory Automation, pp. 1–8, IEEE, 2011.Google Scholar

  • 25.

    Daniel Regulin, Thomas Aicher and Birgit Vogel-Heuser, Improving transferability between different engineering stages in the development of automated material flow modules, Transactions on Automation Science and Engineering 13(4) (2016), 1422–1432.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Stefan Feldmann, Konstantin Kernschmidt and Birgit Vogel-Heuser, Combining a SysML-based modeling approach and semantic technologies for analyzing change influences in manufacturing plant models, Procedia CIRP 17 (2014), 451–456.CrossrefGoogle Scholar

  • 27.

    Luca Berardinelli, Rainer Drath, Emanuel Maetzler and Manuel Wimmer, On the evolution of CAEX: A language engineering perspective, in: Int. Conf. on Emerging Technologies and Factory Automation, pp. 1–8, IEEE, 2016.Google Scholar

  • 28.

    Omid Fatahi Valilai and Mahmoud Houshmand, A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm, Robotics and computer-integrated manufacturing 29(1) (2013), 110–127.CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Valentina Boschian, Mariagrazia Dotoli, Maria Pia Fanti, Giorgio Iacobellis and Walter Ukovich, A metamodeling approach to the management of intermodal transportation networks, Transactions on Automation Science and Engineering 8(3) (2011), 457–469.CrossrefWeb of ScienceGoogle Scholar

  • 30.

    Luca Berardinelli, Stefan Biffl, Emanuel Maetzler, Tanja Mayerhofer and Manuel Wimmer, Model-based co-evolution of production systems and their libraries with AutomationML, in: Conf. on Emerging Technologies and Factory Automation.Google Scholar

  • 31.

    Miriam Schleipen, Arndt Lüder, Olaf Sauer, Holger Flatt and Jürgen Jasperneite, Requirements and concept for plug-and-work, at-Automatisierungstechnik 63(10) (2015), 801–820.Web of ScienceGoogle Scholar

  • 32.

    Michael Würsch, Emanuel Giger and Harald C Gall, Evaluating a query framework for software evolution data, Transactions on Software Engineering and Methodology 22(4) (2013), 38.Web of ScienceGoogle Scholar

  • 33.

    Christophe Seidl, Ina Schaefer and Uwe Assmann, DeltaEcore – A Model-Based Delta Language Generation Framework, in: Modellierung, 2014.Google Scholar

  • 34.

    Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer, Gerti Kappel, Werner Retschitzegger and Wieland Schwinger, An example is worth a thousand words: Composite operation modeling by-example, in: Int. Conf. on Model Driven Engineering Languages and Systems, pp. 271–285, Springer, 2009.Google Scholar

  • 35.

    Antonio Cicchetti, Davide Di Ruscio and Alfonso Pierantonio, Model patches in model-driven engineering, in: Int. Conf. on Model Driven Engineering Languages and Systems, pp. 190–204, Springer, 2009.Google Scholar

  • 36.

    Timo Kehrer, Udo Kelter and Gabriele Taentzer, Propagation of software model changes in the context of industrial plant automation, at-Automatisierungstechnik 62(11) (2014), 803–814.Web of ScienceGoogle Scholar

About the article

Christopher Haubeck

Christopher Haubeck (born 1985) is a researcher in the Distributed Systems research unit in the department for informatics of the Hamburg University. His main scientific interests are software for distributed and cyber-physical systems, architectures for knowledge carrying software, coevolution of runtime artefacts and simulation.

Heiko Bornholdt

Heiko Bornholdt was born in 1989 in Pinneberg, Germany. From 2009 to 2017, he studied Computer Science with a focus on Distributed Systems at the University of Hamburg. Since 2018, he has been working at the University of Hamburg as a research assistant at the Distributed Systems research unit.

Winfried Lamersdorf

Winfried Lamersdorf is a professor in the Informatics Department of Hamburg University and head of the Distributed Systems research unit. His main scientific interests are in the areas of system software for distributed systems, service-orientation, middleware, agent- and component-oriented, autonomous, self-organizing and mobile systems as well as related applications from e-business / e-services via business process management up to logistics and production automation.

Abhishek Chakraborty

Abhishek Chakraborty (born 1988) is currently working as a Research Associate with the Institute of Automation Technology at Helmut Schmidt University Hamburg. His main research interests are management of evolution in automated systems, behavior models and cyber-physical systems.

Alexander Fay

Prof. Dr.-Ing. Alexander Fay (born 1970) is Director of the Institute of Automation Technology at Helmut Schmidt University Hamburg. His main research interests are models, methods, and tools for the efficient engineering of distributed automation systems. Prof. Fay also heads the division “Engineering and operation” in the German association for Measurement and Automation (VDI-/VDE-GMA) and is member of the Scientific Advisory Board of the German Platform “Industrie 4.0”.


Received: 2018-04-08

Accepted: 2018-07-20

Published Online: 2018-10-17

Published in Print: 2018-10-25


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: SPP1593

This work was partially supported by the DFG (German Research Foundation) under the Priority Programme SPP1593: Design for Future – Managed Software Evolution.


Citation Information: at - Automatisierungstechnik, Volume 66, Issue 10, Pages 849–858, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0047.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in