Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology

Editor-in-Chief: Jumar, Ulrich

IMPACT FACTOR 2017: 0.503

CiteScore 2017: 0.47

SCImago Journal Rank (SJR) 2017: 0.212
Source Normalized Impact per Paper (SNIP) 2017: 0.546

See all formats and pricing
More options …
Volume 66, Issue 11


Multi-objective distance minimization problems – applications in technical systems

Multikriterielle Distanzminimierungsprobleme – Anwendungen in technischen Systemen

Sanaz Mostaghim / Christoph Steup / Heiner Zille
Published Online: 2018-11-08 | DOI: https://doi.org/10.1515/auto-2018-0054


This article describes the Distance Minimisation Problem (DMP) from a metaheuristic optimisation point of view. The problem is motivated by real applications and can be used to test the performance of optimisation methods like Evolutionary Algorithms. After formally describing the problem and its extensions using different metrics or dynamics, we perform experiments with well-known metaheuristic methods to demonstrate the performance on various DMP instances. The results show that modern algorithms like NSGA-II and SMPSO can struggle with this kind of problem under certain conditions, especially when Manhattan distances are used. On the other hand, specialised methods like GRA lack diversity of solutions in some cases. This indicates that even modern and powerful metaheuristic algorithms need to be chosen with care and with the respective optimisation task in mind.


Dieser Artikel beschreibt das Distanzminimierungsproblem (DMP) aus der Perspektive der metaheuristischen Optimierung. Das Problem ist von realen Anwendungen inspiriert und kann genutzt werden um die Leistung von Optimierungsmethoden wie Evolutionären Algorithmen zu untersuchen. Nach einer formalen Beschreibung des Problems und der möglichen Erweiterungen mit verschiedenen Metriken oder Dynamiken führen wir Experimente mit bekannten Metaheuristiken durch, um die Performanz auf verschiedenen DMP Instanzen zu untersuchen. Die Ergebnisse zeigen, dass selbst moderne Algorithmen wie NSGA-II und SMPSO unter bestimmten Bedingungen Schwierigkeiten mit dieser Art von Problem haben, insbesondere wenn die Manhattan Metrik benutzt wird. Auf der anderen Seite erreichen spezialisierte Methoden wie der GRA in einigen Fällen nur eine geringe Diversität der Lösungen. Dies zeigt dass bei der Auswahl selbst moderner und etablierter metaheuristischer Algorithmen das zugrundeliegende Problem berücksichtigt werden sollte.

Keywords: multi-objective optimization; evolutionary algorithms; distance minimization problem; industry 4.0

Schlagwörter: multikriterielle Optimierung, evolutionäre Algorithmen, Distanzminimierungsproblem, Industrie 4.0


  • 1.

    Mohaned Al-Obaidy, Aladdin Ayesh and Alaa F. Sheta. Optimizing the communication distance of an ad hoc wireless sensor networks by genetic algorithms. Artificial Intelligence Review, 29(3):183, Nov 2009.Web of ScienceGoogle Scholar

  • 2.

    K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.CrossrefGoogle Scholar

  • 3.

    Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Wiley. Wiley, 2001.Google Scholar

  • 4.

    Joost R. Duflou, John W. Sutherland, David Dornfeld, Christoph Herrmann, Jack Jeswiet, Sami Kara, Michael Hauschild and Karel Kellens. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2):587–609, 2012.CrossrefWeb of ScienceGoogle Scholar

  • 5.

    H. Ishibuchi, M. Yamane, N. Akedo and Y. Nojima. Many-objective and many-variable test problems for visual examination of multiobjective search. In IEEE Congress on Evolutionary Computation, pages 1491–1498, 2013.Google Scholar

  • 6.

    Hisao Ishibuchi, Naoya Akedo and Yusuke Nojima. A many-objective test problem for visually examining diversity maintenance behavior in a decision space. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages 649–656. ACM, 2011.Google Scholar

  • 7.

    Hisao Ishibuchi, Yasuhiro Hitotsuyanagi, Noritaka Tsukamoto and Yusuke Nojima. Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In Parallel Problem Solving from Nature, PPSN XI, pages 91–100. Springer, 2010.Google Scholar

  • 8.

    Mario Köppen and Kaori Yoshida. Many-objective particle swarm optimization by gradual leader selection. In Adaptive and Natural Computing Algorithms, pages 323–331. Springer, 2007.Google Scholar

  • 9.

    Mario Köppen and Kaori Yoshida. Substitute distance assignments in nsga-ii for handling many-objective optimization problems. In Evolutionary Multi-Criterion Optimization, pages 727–741. Springer, 2007.Google Scholar

  • 10.

    André Kottenhahn. Dynamische distanzminimierungsprobleme mit variablem schwierigkeitsgrad für multikriterielle optimierung. Master’s thesis, Otto von Guericke University, 2017.Google Scholar

  • 11.

    H. Masuda, Y. Nojima and H. Ishibuchi. Visual examination of the behavior of emo algorithms for many-objective optimization with many decision variables. In IEEE Congress on Evolutionary Computation, pages 2633–2640, 2014.Google Scholar

  • 12.

    Antonio J Nebro, JJ Durillo, Jose Garcia-Nieto, CA Coello Coello, Francisco Luna and Enrique Alba. SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In IEEE symposium on Computational intelligence in multi-criteria decision-making, pages 66–73, 2009.Google Scholar

  • 13.

    J.I.U. Rubrico, J. Ota, T. Higashi and H. Tamura. Metaheuristic scheduling of multiple picking agents for warehouse management. Industrial Robot: the international journal of robotics research and application, 35(1):58–68, 2008.CrossrefGoogle Scholar

  • 14.

    Oliver Schütze, Adriana Lara and Carlos A Coello Coello. On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. on Evolutionary Computation, 15(4):444–455, 2011.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    H. Zille, A. Kottenhahn and S. Mostaghim. Dynamic distance minimization problems for dynamic multi-objective optimization. In IEEE Congress on Evolutionary Computation, pages 952–959, 2017.Google Scholar

  • 17.

    H. Zille and S. Mostaghim. Properties of scalable distance minimization problems using the manhattan metric. In IEEE Congress on Evolutionary Computation, pages 2875–2882, 2015.Google Scholar

  • 18.

    H. Zille and S. Mostaghim. Using ϵ-dominance for hidden and degenerated pareto-fronts. In IEEE Symposium Series on Computational Intelligence, pages 845–852, 2015.Google Scholar

About the article

Sanaz Mostaghim

Sanaz Mostaghim is a full professor of computer science at the Otto-von-Guericke University Magdeburg, Germany. She holds a PhD degree in electrical engineering and computer science from the University of Paderborn, Germany. She worked as a postdoctoral fellow at ETH Zurich in Switzerland and as a lecturer at Karlsruhe Institute of technology (KIT), Germany. Her research interests are in the area of evolutionary multi-objective optimisation, swarm intelligence, and their applications in robotics, science and industry. She serves as an associate editor for IEEE Trans. on Evolutionary Computation, IEEE Trans. on Cybernetics, IEEE Trans. on System, Man and Cybernetics: Systems and IEEE Trans. on Emerging Topics in Computational Intelligence.

Christoph Steup

Christoph Steup is a Post-Doc and project manager at the Otto-von- Guericke University in Magdeburg. He studied computer science with an emphasis on electrical engineering in Magdeburg and at the KTH in Sweden. After receiving his diploma, he started working on wireless sensor networks and distributed robotics in 2011 and published papers in the field of distributed sensing, time synchronization in WSN and efficient programming of embedded devices. Apart from his research, he supervises student teams entering competitions in the RoboCup and the Carolo Cup. He finished is PhD in 2018 and is now handling the theoretical and practical swarm robotics research in the “SwarmLab” of the Otto-von-Guericke University. In the lab he works on locomotion, self-organization, distributed sensing and distributed behaviour of swarms of air and ground robots.

Heiner Zille

Heiner Zille studied Information Engineering and Management at the Karlruhe Institute of Technology (KIT), Germany and the Doshisha University, Japan. He received his B.Sc. and M.Sc. degrees in 2011 and 2014 respectively. Currently, he is working as a research assistant and pursuing his PhD degree in the areas of evolutionary computation and swarm intelligence. From August 2015 to July 2016, he worked as a guest PhD student at Osaka Prefecture University in Sakai, Japan. His research focuses on multi-objective optimisation, in particular on problems with large numbers of decision variables.

Received: 2018-04-28

Accepted: 2018-07-31

Published Online: 2018-11-08

Published in Print: 2018-11-27

Citation Information: at - Automatisierungstechnik, Volume 66, Issue 11, Pages 964–974, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0054.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in