Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology

Editor-in-Chief: Jumar, Ulrich

IMPACT FACTOR 2018: 0.500

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.532

See all formats and pricing
More options …
Volume 66, Issue 12


Wearables: Ein Blick aus ärztlicher Perspektive über Möglichkeiten, Herausforderungen und Risiken im Gesundheitswesen

Wearables: A medical perspective on opportunities, challenges and risks in healthcare

Markus R. Mutke / Jens Eckstein
Published Online: 2018-11-29 | DOI: https://doi.org/10.1515/auto-2018-0060


Durch die dynamische Entwicklung von mobilen Sensoren bieten sich Medizinern ständig neue, potentiell kosteneffektive Wege für Diagnostik, Monitoring und Screening. Angetrieben durch den wachsenden Erfolg auf dem Konsumentenmarkt streben immer mehr Wearables & Co in den Gesundheitsmarkt. Weltweit beschäftigen sich Forschungsgruppen seit Jahren mit den Auswirkungen dieser mobilen Technologien auf unser Gesundheitswesen. In der Menge der zahlreichen Möglichkeiten und in Anbetracht der rapiden Entwicklung sollte jedoch bedacht werden, dass für einen erfolgreichen Einsatz am Patienten einige Herausforderungen und Risiken berücksichtigt werden müssen. Der Artikel bietet einen Einstieg in das breite Themenfeld rund um die Einführung von Wearables in die klinische Routine und berichtet über eine Auswahl an realisierten und potentiellen Einsatzmöglichkeiten.


Due to the dynamic development of mobile sensors, physicians are continuously provided with new, potentially cost-effective ways for diagnostics, monitoring and screening. Driven by the growing success on the consumer market, more and more wearables & co. are reaching for the healthcare sector and have been the subject of intensive research worldwide for years. With so many opportunities and given the rapid development, it should stay in mind that some challenges and risks must be taken into account for the successful transformation into healthcare products. The article shares considerations from a medical perspective and presents a selection of applications. It shall provide an insight into a broad topic and thus contribute to a better understanding of the whole process around the implementation of wearables into clinical routine.

Schlagwörter: Wearables; Gesundheitswesen; mobile Sensoren; digitale Daten

Keywords: wearables; health care; mobile sensors; digital data


  • 1.

    (IDC), I.D.C., Smartwatches to Have More Than Just Fifteen Minutes of Fame, According to IDC. International Data Corporation (IDC), 2018.

  • 2.

    Dias, D. and J. Paulo Silva Cunha, Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors, 2018. 18(8): p. 2414.CrossrefGoogle Scholar

  • 3.

    Lukasz Piwek, D.A.E., Sally Andrews, Adam Joinson, The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Medicine. 2016. 13(2): e1001953.Google Scholar

  • 4.

    Khan, Y., et al., Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016. 28(22): p. 4373–4395.CrossrefGoogle Scholar

  • 5.

    Chester, J.G. and J.L. Rudolph, Vital Signs in Older Patients: Age-Related Changes. Journal of the American Medical Directors Association, 2011. 12(5): p. 337–343.CrossrefGoogle Scholar

  • 6.

    Evans, D., B. Hodgkinson and J. Berry, Vital signs in hospital patients: a systematic review. International Journal of Nursing Studies, 2001. 38(6): p. 643–650.CrossrefGoogle Scholar

  • 7.

    Chan, A.M., et al., Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013.Google Scholar

  • 8.

    Yang, G.-Z., Implantable Sensors and Systems: From Theory to Practice, 2018: Springer.Google Scholar

  • 9.

    Kyle, U.G., et al., Bioelectrical impedance analysis—part I: review of principles and methods. Clinical Nutrition, 2004. 23(5): p. 1226–1243.CrossrefGoogle Scholar

  • 10.

    Peake J.M., G. Kerr, J.P. Sullivan, A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Frontiers in Physiology. 2018; 9: 743. doi:.CrossrefGoogle Scholar

  • 11.

    Lo, B.P., H. Ip and G.-Z. Yang, Transforming health care: body sensor networks, wearables, and the Internet of Things, 2016.Google Scholar

  • 12.

    Wolf, P.A., R.D. Abbott and W.B. Kannel, Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 1991. 22(8): p. 983-8.Google Scholar

  • 13.

    Kirchhof, P., et al., 2016 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration With EACTS. Rev Esp Cardiol (Engl Ed), 2017. 70(1): p. 50.Google Scholar

  • 14.

    Krivoshei, L., et al., Smart detection of atrial fibrillationdagger. Europace, 2017. 19(5): p. 753–757.Google Scholar

  • 15.

    Koenig, N., et al., Validation of a New Heart Rate Measurement Algorithm for Fingertip Recording of Video Signals with Smartphones. Telemed J E Health, 2016. 22(8): p. 631-6.Google Scholar

  • 16.

    Brasier, N., et al., Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). EP Europace, 2018.Google Scholar

  • 17.

    O’Brien, E., et al., European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. Journal of Hypertension, 2003. 21(5): p. 821–848.CrossrefGoogle Scholar

  • 18.

    Raichle, C.J., et al., Performance of a Blood Pressure Smartphone App in Pregnant Women: The iPARR Trial (iPhone App Compared With Standard RR Measurement). Hypertension, 2018.Google Scholar

  • 19.

    Fortino, G. and V. Giampà. PPG-based methods for non invasive and continuous blood pressure measurement: an overview and development issues in body sensor networks. In: 2010 IEEE International Workshop on Medical Measurements and Applications, 2010.Google Scholar

  • 20.

    Cretikos, M.A., et al., Respiratory rate: the neglected vital sign. Medical Journal of Australia, 2008. 188(11): p. 657.Google Scholar

  • 21.

    Düking, P., et al., Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR Mhealth Uhealth, 2018. 6(4).Google Scholar

  • 22.

    Evenson, K.R., M.M. Goto and R.D. Furberg, Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 2015. 12(1): p. 159.CrossrefGoogle Scholar

  • 23.

    Gresham, G., et al., Wearable activity monitors in oncology trials: Current use of an emerging technology. Contemp Clin Trials, 2018. 64: p. 13–21.CrossrefGoogle Scholar

  • 24.

    van der Meij, E., et al., Assessing pre- and postoperative activity levels with an accelerometer: a proof of concept study. BMC Surg, 2017. 17(1): p. 56.CrossrefGoogle Scholar

  • 25.

    Schrack, J.A., et al., Assessing Daily Physical Activity in Older Adults: Unraveling the Complexity of Monitors, Measures, and Methods. J Gerontol A Biol Sci Med Sci, 2016. 71(8): p. 1039–1048.CrossrefGoogle Scholar

  • 26.

    Young, J. and S.K. Inouye, Delirium in older people. Bmj, 2007. 334(7598): p. 842–846.CrossrefGoogle Scholar

  • 27.

    Snyder, F., et al., Changes in respiration, heart rate, and systolic blood pressure in human sleep. Journal of Applied Physiology, 1964. 19(3): p. 417–422.CrossrefGoogle Scholar

  • 28.

    Shelgikar, A.V., P.F. Anderson and M.R. Stephens, Sleep Tracking, Wearable Technology, and Opportunities for Research and Clinical Care. Chest, 2016. 150(3): p. 732–743.CrossrefGoogle Scholar

  • 29.

    Kassal, P., M.D. Steinberg and I.M. Steinberg, Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 2018. 266: p. 228–245.CrossrefGoogle Scholar

  • 30.

    Choi, J., et al., Skin-interfaced systems for sweat collection and analytics. Science Advances, 2018. 4(2): p. eaar3921.Google Scholar

  • 31.

    Kim, J., A.S. Campbell and J. Wang, Wearable non-invasive epidermal glucose sensors: A review. Talanta, 2018. 177: p. 163–170.CrossrefGoogle Scholar

  • 32.

    Cappon, G., et al., Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics, 2017. 6(3): p. 65.CrossrefGoogle Scholar

  • 33.

    Lobodzinski, S.S., ECG Patch Monitors for Assessment of Cardiac Rhythm Abnormalities. Progress in Cardiovascular Diseases, 2013. 56(2): p. 224–229.CrossrefGoogle Scholar

  • 34.

    Vilcant V., O. Hai, Implantable Loop Recorder. [Updated 2018 Mar 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470398/.Google Scholar

  • 35.

    Epstein, A.E., et al., ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Journal of the American College of Cardiology, 2008. 51(21): p. e1–e62.Google Scholar

  • 36.

    Badugu, R., J.R. Lakowicz and C.D. Geddes, A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring. Journal of Fluorescence, 2003. 13(5): p. 371–374.CrossrefGoogle Scholar

  • 37.

    U.S. Department of Health and Human Services, Food and Drug Administration (FDA). 2015. Mobile medical applications guidance for industry and food and drug administration staff. http://www.fda.gov/MedicalDevices/DigitalHealth/MobileMedicalApplications/default.htm.Google Scholar

  • 38.

    Schweizerisches Heilmittelinstitut, Leitfaden zur Medizinprodukte-Regulierung / Medizinprodukte-Zyklus 2018. www.swissmedic.ch/md-leitfaden, abgerufen 12.08.2018.Google Scholar

  • 39.

    Pyrek, K.M., Mobile Technology Disinfection: Contaminated Devices Pose Threat to Patients. Screening, 2018.Google Scholar

  • 40.

    Yiwen, G., L. He and L. Yan, An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 2015. 115(9): p. 1704–1723.CrossrefGoogle Scholar

  • 41.

    Caduff, A., et al., Wearable sensor device, 2015, Google Patents.Google Scholar

  • 42.

    Goverdovsky, V., et al., Hearables: Multimodal physiological in-ear sensing. Scientific reports, 2017. 7(1): p. 6948.CrossrefGoogle Scholar

  • 43.

    Lin, F., et al., Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Transactions on Industrial Informatics, 2016. 12(6): p. 2281–2291.CrossrefGoogle Scholar

  • 44.

    Kim, D.Y., et al., Different Location of Triaxial Accelerometer and Different Energy Expenditures. Yonsei Med J, 2014. 55(4): p. 1145–1151.CrossrefGoogle Scholar

  • 45.

    Qaseem, A., et al., Risk assessment and prevention of pressure ulcers: a clinical practice guideline from the American College of Physicians. Annals of internal medicine, 2015. 162(5): p. 359–369.CrossrefGoogle Scholar

  • 46.

    Fleming, S., et al., Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet, 2011. 377(9770): p. 1011–1018.CrossrefGoogle Scholar

  • 47.

    Gillum, R., Pathophysiology of hypertension in blacks and whites. A review of the basis of racial blood pressure differences. Hypertension, 1979. 1: p. 468–475.CrossrefGoogle Scholar

  • 48.

    Wagner, D.R. and V.H. Heyward, Measures of body composition in blacks and whites: a comparative review. The American Journal of Clinical Nutrition, 2000. 71(6): p. 1392–1402.CrossrefGoogle Scholar

  • 49.

    Chow, J.J., et al., Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait & Posture, 2017. 57: p. 199–203.CrossrefGoogle Scholar

  • 50.

    Lamont, R.M., et al., Accuracy of wearable physical activity trackers in people with Parkinson’s disease. Gait & Posture, 2018. 63: p. 104–108.CrossrefGoogle Scholar

  • 51.

    Floegel, T.A., et al., Validation of Consumer-Based Hip and Wrist Activity Monitors in Older Adults With Varied Ambulatory Abilities. The Journals of Gerontology: Series A, 2017. 72(2): p. 229–236.CrossrefGoogle Scholar

  • 52.

    Najafabadi, M.M. et al., Deep learning applications and challenges in big data analytics. Journal of Big Data, 2015. 2(1): p. 1.CrossrefGoogle Scholar

  • 53.

    Millenson, M., Baldwin, J., Zipperer, L., et al., Beyond Dr. Google: the evidence on consumer-facing digital tools for diagnosis. Diagnosis.

  • 54.

    McCartney, M., How do we know whether medical apps work? BMJ: British Medical Journal, 2013. 346.Google Scholar

  • 55.

    Plante, T.B., et al., Trends in user ratings and reviews of a popular yet inaccurate blood pressure-measuring smartphone app. Journal of the American Medical Informatics Association, 2018. 25(8): p. 1074–1079.CrossrefGoogle Scholar

  • 56.

    Wolf, J.A., et al., Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatology, 2013. 149(4): p. 422–426.CrossrefGoogle Scholar

  • 57.

    Brouard B., P. Bardo, C. Bonnet, N. Mounier, M. Vignot, S. Vignot, Mobile applications in oncology: is it possible for patients and healthcare professionals to easily identify relevant tools? Ann Med. 2016 Nov; 48(7):509–515. Epub 2016 Jun 27.CrossrefGoogle Scholar

  • 58.

    Grundlagendokument – Für eine zukunftsorientierte Datenpolitik in der Schweiz. Swiss Data Alliance, https://www.swissdataalliance.ch/ Abgerufen am 12.08.2018.Google Scholar

  • 59.

    https://www.midata.coop/.Google Scholar

  • 60.

    https://www.healthbank.coop/.Google Scholar

  • 61.

    Azaria, A., et al., MedRec: Using Blockchain for Medical Data Access and Permission Management. In: 2016 2nd International Conference on Open and Big Data (OBD), 2016.Google Scholar

About the article

Markus R. Mutke

Dr. med. univ. Markus Mutke ist Assistenzarzt der Inneren Medizin und Doktorand in der wissenschaftlichen Arbeitsgruppe von Dr. Jens Eckstein am Universitätsspital Basel, CH.

Jens Eckstein

PD Dr. med. Jens Eckstein, PhD ist Chief Medical Information Officer des Universitätspitals Basel und leitender Arzt der Inneren Medizin. Hauptarbeitsgebiete: Forschung zu Detektion von Vorhofflimmern. Erprobung, Validierung und Implementierung digitaler Technologien in die klinische Routine.

Received: 2018-04-30

Accepted: 2018-10-12

Published Online: 2018-11-29

Published in Print: 2018-12-19

Citation Information: at - Automatisierungstechnik, Volume 66, Issue 12, Pages 993–1001, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0060.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in