Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology

Editor-in-Chief: Jumar, Ulrich

IMPACT FACTOR 2017: 0.503

CiteScore 2017: 0.47

SCImago Journal Rank (SJR) 2017: 0.212
Source Normalized Impact per Paper (SNIP) 2017: 0.546

See all formats and pricing
More options …
Volume 66, Issue 12


Temperature-controlled laser therapy of the retina via robust adaptive H-control

Temperaturgeregelte Lasertherapie der Retina mittels robust adaptiver H-Regelung

Christian Herzog Christian Hoffmann / Ole Thomsen / Benedikt Schmarbeck
  • Lucas Varity GmbH, Koblenz, Germany. Benedikt Schmarkbeck was with Medizinisches Laserzentrum Lübeck at the time the contents of this article were conceived
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marlin Siebert / Ralf Brinkmann
  • Medizinisches Laserzentrum Lübeck GmbH, Lübeck, Germany
  • Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-29 | DOI: https://doi.org/10.1515/auto-2018-0066


Recent studies demonstrate therapeutic benefits in retinal laser therapy even for non-visible effects of the irradiation. However, in practice, ophthalmologists often rely on the visual inspection of irradiation sites to manually set the laser power for subsequent ones. Since absorption properties vary strongly between sites, this procedure can lead to under- or over-treatment. To achieve safe automatic retinal laser therapy, this article proposes a robust control scheme based on photoacoustic feedback of the retinal temperature increase. The control scheme is further extended to adapt to real-time parameter estimates and associated bounds on the uncertainty of each irradiation site. Both approaches are successfully validated in ex vivo experiments on pigs’ eyes, achieving consistent irradiation durations of 55 ms despite the uncertainty in absorption properties.


Aktuelle Studien haben therapeutisch relevante Effekte bei der retinalen Lasertherapie auch im Falle nicht-sichtbarer Effekte der Energieeinträge belegen können. In der Praxis ist es jedoch üblich, dass Ophthalmologen die Laserleistung anhand sichtbarer Läsionen an vorangegangenen Bestrahlungensorten für die jeweils nachfolgenden einstellen. Da jedoch die Absorptionseigenschaften stark variieren, kann dies zu Unter- oder Überbehandlung führen. Zur Gewährleistung sicherer, automatisierter retinaler Laserbehandlungen diskutiert dieser Beitrag ein robustes Regelkonzept basierend auf der Echtzeit-Rückkopplung der photoakustisch gemessenen Temperaturerhöhung auf der Retina. Das Regelkonzept wird zudem erweitert, um während der Behandlung geschätzte Modellparameter und die damit assoziierte Unsicherheit zur Adaption zu verwenden. Beide Regelansätze sind erfolgreich in ex-vivo Experimenten an Schweineaugen validiert worden und gewährleisten kurze Bestrahlungszeiten von 55 ms trotz der großen Unsicherheiten in den Absorptionseigenschaften.

Keywords: Laser therapy; robust control; parameter estimation; photoacoustics; real-time temperature determination

Schlagwörter: Lasertherapie; Robuste Regelung; Parameterschätzung; Optoakustik; Echtzeittemperaturmessung


  • 1.

    F. Grehn, Augenheilkunde. Springer-Verlag, 2012.Google Scholar

  • 2.

    P. Scholz, L. Altay and S. Fauser, “A review of subthreshold micropulse laser for treatment of macular disorders,” Adv. Ther., vol. 34, no. 7, 1528–1555, 2017.CrossrefWeb of ScienceGoogle Scholar

  • 3.

    A. Baade, C. von der Burchard, M. Lawin, S. Koinzer, B. Schmarbeck, K. Schlott, Y. Miura, J. Roider, R. Birngruber and R. Brinkmann, “Power-controlled temperature guided retinal laser therapy,” J. Biomed. Opt., vol. 22, no. 11, 118 001–1–11, 2017.Web of ScienceGoogle Scholar

  • 4.

    G. Schule, G. Huttmann, C. Framme, J. Roider and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt., vol. 9, no. 1, 173–179, 2004.CrossrefGoogle Scholar

  • 5.

    J. Kandulla, H. Elsner, R. Birngruber and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt., vol. 11, no. 4, 041111, 2006.Google Scholar

  • 6.

    R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider and R. Birngruber, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt., vol. 17, no. 6, 061 219–1–10, 2012.Web of ScienceGoogle Scholar

  • 7.

    P. Apkarian and D. Noll, “Nonsmooth h-infinity-synthesis,” IEEE Trans. Automat. Contr., vol. 51, no. 1, 71–86, 2006.CrossrefGoogle Scholar

  • 8.

    P. Apkarian, M. N. Dao and D. Noll, “Parametric robust structured control design,” IEEE Trans. Automat. Contr., vol. 60, no. 7, 1857–1869, 2015.Web of ScienceCrossrefGoogle Scholar

  • 9.

    W. S. Levine, Ed., The Control Handbook: Control System Advanced Methods, 2nd ed., ser. The Electrical Engineering Handbook Series. Boca Raton: CRC Press, 2011.Google Scholar

  • 10.

    S. Skogestad and I. Postlethwaite, Multivariable Feedback Control – Analysis and Design. John Wiley & Sons, 2001.Google Scholar

  • 11.

    C. Herzog, né Hoffmann and H. Werner, “A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations,” IEEE Trans. Contr. Syst. Technol., vol. 23, no. 2, 416–433, 2015.Web of ScienceCrossrefGoogle Scholar

  • 12.

    C. Herzog, né Hoffmann and H. Werner, “Complexity of implementation and synthesis in linear parameter-varying control,” in Proc. 19th IFAC World Congr., 2014, 11749–11760.Google Scholar

  • 13.

    M. Sato, “Robust gain-scheduled flight controller using inexact scheduling parameters,” in Proc. Amer. Control Conf., 2013.Google Scholar

  • 14.

    J. Doyle, A. Packard and K. Zhou, “Review of lfts, lmis, and mu,” in Proc. 30th IEEE Conf. Decision Contr., 1991.Google Scholar

  • 15.

    H. S. Abbas, R. Toth and H. Werner, “State-space realization of lpv input-output models: Practical methods for the user,” in Proc. Amer. Control Conf., 2010, 3883–3888.Google Scholar

About the article

Christian Herzog, né Hoffmann, studied mechatronics at Hamburg University of Technology (TUHH) from 2008–2011 and received his Ph. D. in 2015 studying nonlinear and distributed control with the Institute of Control Systems, TUHH. Since 2015 he is a tenured researcher at the Institute for Electrical Engineering in Medicine at the University of Lübeck and active in probabilistic algorithms in systems and control. He is also strongly interested in engineering ethics.

Ole Thomsen

Ole Thomsen was born in 1994 in Kiel and studies Medical Engineering Science at the University of Lübeck since 2014. Having received his B. Sc. degree in 2017 he is currently pursuing his M. Sc. He received the second prize for the best paper award at the AUTOMED 2018 for his preliminary work on the temperature-controlled laser therapy of the retina via robust adaptive H-control that lead to this present journal article.

Benedikt Schmarbeck

Benedikt Schmarbeck was born in 1988 in Kiel. He studied medical engineering science in Lübeck and graduated in 2016 with a master’s degree. Afterwards he joined the Medical Laser Center in Lübeck and worked in the field of automated retinal photocoagulation until the beginning of 2018. In 2018 he joined ZF TRW as optical engineer in automated driver’s assistance systems.

Marlin Siebert

Marlin Siebert was born in 1995 in Wolfenbüttel and is studying medical engineering at the University to Lübeck since 2013. He received his B. Sc. degree in 2017 and is currently pursuing his M. Sc. His bachelor’s thesis contributed to the active power regulation of treatment lasers for the temperature-controlled photocoagulation of the retina.

Ralf Brinkmann

Ralf Brinkmann studied physics at the University of Hannover, Germany, with a focus on quantum optics and lasers. After a 5-year industrial interim period, he joined the Medical Laser Center in Lübeck, Germany, in 1993, and received his Ph. D. from the University of Lübeck. Since 2005 he has been holding a permanent position as a faculty member at the University’s Institute of Biomedical Optics, focusing on biophotonics and laser applications in medicine. As also strongly interested in technology transfer of basic research results to industry, he is also leading the Medical Laser Center Lübeck, a non-profit R & D company on the BioMedTec Science campus Lübeck, as CEO.

Received: 2018-05-12

Accepted: 2018-10-10

Published Online: 2018-11-29

Published in Print: 2018-12-19

Funding Source: Bundesministerium für Bildung und Forschung

Award identifier / Grant number: 13GW0043B

This work was funded by the German Ministry of Education and Research (BMBF) in the consortium “Innovative imaging and intervention for retinal laser therapies (I-cube)” Fkz: 13GW0043B.

Citation Information: at - Automatisierungstechnik, Volume 66, Issue 12, Pages 1051–1063, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0066.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in