Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology
]

Editor-in-Chief: Jumar, Ulrich


IMPACT FACTOR 2018: 0.500

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.532

Online
ISSN
2196-677X
See all formats and pricing
More options …
Volume 66, Issue 12

Issues

Application of Kalman filter for breathing effort reconstruction for OSAS patients in breathing therapy

Anwendung des Kalman Filters zur Rekonstruktion der Atemanstrengung bei OSAS-Patienten in der Atemtherapie

Mathias Scheel
  • Corresponding author
  • Automation and Mechatronics Group – Hochschule Wismar, Philipp-Mueller-Straße 14, 23966 Wismar, Germany
  • HOFFRICHTER GmbH, Mettenheimer Straße 12, 19061 Schwerin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Berndt / Olaf Simanski
  • Computational Engineering and Automation Group, Hochschule Wismar, Philipp-Mueller-Straße 14, 23966 Wismar, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-29 | DOI: https://doi.org/10.1515/auto-2018-0067

Abstract

The CPAP (Continuous Positive Airway Pressure) therapy is the gold standard to treat the obstructive sleep apnoea syndrome (OSAS). The CPAP-device generates a positive pressure to splint the upper respiratory tracts preventing an collapse of the tracts and the pharynx. It has been shown that many CPAP-devices cannot maintain the pressure set points adjusted by the medical staff, because the mask pressure is seriously influenced by the patient’s breathing. In this work a method is provided to estimate the breathing effort of the patient. Therefore a model of the breathing therapy system is introduced and the application of the Kalman filter is described. The estimated breathing effort could then be used in further control strategies to improve the control quality.

Zusammenfassung

Die CPAP (Continuous Positive Airway Pressure)-Therapie ist der Goldstandard, um das obstruktive Schlafapnoesyndrom (OSAS) zu behandeln. Das CPAP-Gerät erzeugt einen positiven Atemwegsdruck, um die oberen Atemwege pneumatisch zu schienen. Damit kann ein Verschluss der Atemwege und des Pharynx verhindert werden. Es hat sich gezeigt, dass viele CPAP-Geräte die vom Fachpersonal geforderten Therapiedrücke nur unzureichend einhalten, da der Druck in der Maske durch die Atmung des Patienten erheblich beeinflusst wird. In dieser Arbeit wird eine Methode vorgestellt, die Atemanstrengungen des Patienten zu schätzen. Dafür wird ein Modell des Atemtherapiegerätes vorgestellt und die Anwendung eines Kalman Filters beschrieben. Die geschätzte Atemanstrengung kann dann für weitere Regelungsstrategien verwendet werden, um damit die Regelgüte zu verbessern.

Keywords: obstructive sleep apnoe syndrome; Continuous Positive Airway pressure; modeling; identification; breathing effort reconstruction; Kalman filter; ASL 5000 Breathing Simulator

Schlagwörter: obstruktives Schlafapnoesyndrom; kontinuierliche Überdrucktherapie; Modellierung; Identifikation; Rekonstruktion der Atemanstrengung; Kalman Filter; ASL 5000 Lungensimulator

References

  • 1.

    J. Marschall, S. Hildebrandt, H. Sydow and P.D. Nolting, Gesundheitsreport 2017, Analyse der Arbeitsunfähigkeitsdaten. Update: Schlafstörungen, KESSLER Druck + Medien GmbH & Co. KG (2017).Google Scholar

  • 2.

    H. Peter, T. Penze and J.H. Peter, Enzyklopädie der Schlafmedizin, Springer Medizin Verlag Heidelberg.Google Scholar

  • 3.

    Edited from http://isdhealthsolutions.com/cpap-therapy/, last visit: on 14.05.2018 at 8:30 am.Google Scholar

  • 4.

    C.E. Sullivan, F.G. Issa, M. Berthon-Jones and L. Eves, Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares, The Lancet 37(8225) (1981), 862–865.Google Scholar

  • 5.

    B. Louis, K. Leroux, M. Boucherie, D. Isabey, V. Grillier-Lanoir, B. Fauroux and D. Lofaso, Pressure stability with CPAP devices: A bench evaluation, Sleep Medicine, Elsevier (2011).Google Scholar

  • 6.

    M. Scheel, T. Schauer, A. Berndt and O. Simanski, Model-based control approach for a CPAP-device considering patient’s breathing effort, IFAC-PapersOnLine (2017), 9948–9953.Google Scholar

  • 7.

    M. Scheel, A. Berndt and O. Simanski, Model predictive control approach for a CPAP-device, Current Directions in Biomedical Engineering 3 (2017), 313–316.Google Scholar

  • 8.

    H. Matthys and W. Seeger, Klinische Pneumologie, 4., überarbeitete und aktualisierte Auflage, Springer Medizin Verlag Heidelberg, 2008.Google Scholar

  • 9.

    F. Dietz, A. Schloßer and D. Abel, Flowregelung für die Heimbeatmung unter Berücksichtigung der Spontanatmung, GMA Kongress 2003, VDI-Berichte 1756, VDI-Verlag (2003), 421–428.Google Scholar

  • 10.

    K. Lopez-Navas, E. Rother and U. Wenkebach, Comparison of six models of the respiratory system based on parametric estimates from three identification models, Biomedical Engineering / Biomedizinische Technik 57 (2012), 48–51.Google Scholar

  • 11.

    T.A. Shemmeri, Engineering Thermodynamics, Tarik Al-Shemmeri & Ventus Publishing ApS, 2010.Google Scholar

  • 12.

    A.T. Johnson, Biomechanics and Exercise Physiology: Quantitative Modeling, CRC Press, 2007.Google Scholar

  • 13.

    B. Diong, H. Nazeran, P. Nava and M. Goldman, Modeling Human Respiratory Impedance – Comparing the Best Method with the Least Estimation Errors., IEEE Engineering in Medicine and Biology Magazine 26 (2007), 48–55.CrossrefGoogle Scholar

  • 14.

    C. Schranz, P.D. Docherty, Y.S. Chiew, K. Möller and J.G. Chase, Iterative integral parameter identification of a respiratory mechanics model, BioMedical Engineering OnLine (2012).Web of ScienceGoogle Scholar

  • 15.

    S. Ganzert, K. Möller, D. Steinmann, S. Schumann and J. Guttmann J, Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model, Crit Care (2009).Web of ScienceGoogle Scholar

  • 16.

    I. Popov, P. Koschorrek, A. Haghani and T. Jeinsch, Adaptive Kalman Filtering for Dynamic Positioning of Marine Vessels, IFAC PapersOnLine 50(1) (2017), 1121–1126.Google Scholar

  • 17.

    D. Simon, Kalman Filtering, Embedded Systems Programming (2001).Google Scholar

  • 18.

    O. A. Babich, Using the Picard Method to Calculate Covariance Matrices in the Discrete Kalman Filters, Gyroscopy and Navigation 8(4) (2017).Google Scholar

About the article

Mathias Scheel

Mathias Scheel studied information technology and electrical engineering with focus on automation and mechatronic at the Hochschule Wismar-University of Applied Sciences, Technology, Business and Design from 2008 to 2013 and received his „Master of Engineering“ (M. Eng.) in 2013. Since 2013 he is a member of the Automation and Mechatronics Group at the Hochschule Wismar and started his doctoral project in cooperation with HOFFRICHTER GmbH. In 2016 he becomes a member of the technical committee “AUTOMED” in the German Society of Biomedical Engineering and the VDI/VDE in Germany. His research area is modeling, identification and control in artificial ventilation and breathing therapy.

Andreas Berndt

Andreas Berndt studied electrical engineering with focus on communications engineering at the Hochschule Stralsund-University of Applied Sciences from 1996 to 2000 and received his degree Dipl.-Ing. (FH) in 2000. After his study he started his career at Siemens AG as a development engineer. 2010 he moved to HOFFRICHTER GmbH and worked as a development engineer for hardware. Since 2014 he is the head of development and in 2015 he assumed the task of a site manager of HOFFRICHTER GmbH in Schwerin.

Olaf Simanski

Olaf Simanski studied electrical engineering at the University of Rostock in Germany from 1991 to 1996. After this he worked as scientific co-worker at the University of Rostock at the Institute of Automation. During this period he wrote 2002 his PhD-thesis and 2010 his “habilitation” in the field of measurement and control of biomedical, especially anesthesia systems. From 2002 to 2011 he was the leader of the “Medical Control Group” at the Institute of Automation at the University of Rostock. 2011 he moved to the Hochschule Wismar-University of Applied Sciences, Technology, Business and Design as chair of Automation. Since 2012 he is also the leader of the “Medical Control Group” at the “Control Application Centre” at the University of Rostock.


Received: 2018-05-14

Accepted: 2018-10-25

Published Online: 2018-11-29

Published in Print: 2018-12-19


The author want to thank HOFFRICHTER GmbH for financial support and for the preparation of the test device.


Citation Information: at - Automatisierungstechnik, Volume 66, Issue 12, Pages 1064–1071, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0067.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in