Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology
]

Editor-in-Chief: Jumar, Ulrich

12 Issues per year


IMPACT FACTOR 2017: 0.503

CiteScore 2017: 0.47

SCImago Journal Rank (SJR) 2017: 0.212
Source Normalized Impact per Paper (SNIP) 2017: 0.546

Online
ISSN
2196-677X
See all formats and pricing
More options …
Volume 66, Issue 3

Issues

From acceleration-based semi-active vibration reduction control to functional observer design

Von einer beschleunigungsbasierten semiaktiven Vibrationskontrolle zum Entwurf funktionaler Beobachter

Yebin Wang / Kenji Utsunomiya
  • Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Amagasaki City, 661–8661, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-13 | DOI: https://doi.org/10.1515/auto-2017-0064

Abstract

This work investigates a functional estimation problem for single input single output linear and nonlinear systems, motivated by its enabling role in acceleration-based semi-active control. Solvability of a linear functional estimation problem is studied from a geometric approach, where the functional dynamics are derived, decomposed, and transformed to expose structural properties. This approach is extended to solve a challenging nonlinear functional observer problem, combining with the exact error linearization. Existence conditions of nonlinear functional observers are established. Simulation verifies existence conditions and demonstrates the effectiveness of the proposed functional observer designs.

Zusammenfassung

Wir untersuchen ein Problem der funktionalen Schätzung für lineare und nicht-lineare Systeme mit einem Eingang und Ausgang, das durch die Anwendung beschleunigungsbasierter semiaktiver Steuerungen motiviert wird. Die Lösbarkeit eines linearen funktionalen Schätzungsproblems wird geometrisch angegangen, wobei die funktionale Dynamik hergeleitet, zerlegt und transformiert wird, um strukturelle Eigenschaften herauszuarbeiten. Diese Vorgehensweise wird erweitert, um ein schwieriges nichtlineares funktionales Schätzungsproblem zu lösen, kombiniert mit einer exakten Fehlerlinearisierung. Existenzbedingungen für nichtlineare funktionale Beobachter werden formuliert. Eine Simulation verifiziert die Existenzbedingungen und demonstriert die Effektivität der vorgeschlagenen Entwürfe funktionaler Beobachter.

Keywords: Semi-active; vibration reduction; estimation; nonlinear system; functional observer

Schlagwörter: semiaktiv; Vibrationsreduzierung; Schätzung; nichtlineare Systeme; funktionale Beobachter

References

  • 1.

    D. C. Karnopp, M. J. Crosby, and R. A. Harwood, “Vibration control using semi-active force suspension,” Trans. ASME, J. Eng. Ind., vol. 96, no. 2, pp. 619–626, 1974.CrossrefGoogle Scholar

  • 2.

    E. J. Krasnicki, “Comparison of analytical and experimental results for a semi-active vibration isolator,” in Shock and Vibration Bulletin, vol. 50. Washington, DC: The Shock and Vibration Information Center, Naval Research Laboratory, 1980.Google Scholar

  • 3.

    S. J. Dyke, B. F. Spencer Jr., M. K. Sain, and J. D. Carlson, “Modeling and control of magnetorheological dampers for seismic response reduction,” Smart Mater. Struct., vol. 5, no. 5, pp. 565–575, Oct. 1996.Google Scholar

  • 4.

    H. Du, S. K. Yim, and J. Lam, “Semi-active H control of vehicle suspension with magneto-rheological dampers,” J. Sound Vib., vol. 283, no. 3–5, pp. 981–996, May 2005.CrossrefGoogle Scholar

  • 5.

    D. Hrovat, D. L. Margolis, and M. Hubbard, “An approach toward the optimal semi-active suspension,” Trans. ASME, J. Dyn. Sys. Meas. Control, vol. 111, no. 3, pp. 288–296, 1988.Google Scholar

  • 6.

    H. E. Tseng and J. K. Hedrick, “Semi-active control laws-optimal and sub-optimal,” Vehicle Syst. Dyn., vol. 23, no. 1, pp. 545–569, 1994.CrossrefGoogle Scholar

  • 7.

    G. Leitmann, “Semi-active control for vibration attenuation,” J. Intel. Mat. Syst. Str., vol. 5, no. 6, pp. 841–846, 1994.CrossrefGoogle Scholar

  • 8.

    S. Ohsaku, T. Nakayama, I. Kamimura, and Y. Motozono, “Nonlinear H control for semi-active suspension,” JSAE Review, vol. 20, no. 4, pp. 447–452, 1999.CrossrefGoogle Scholar

  • 9.

    S. M. Savaresi and C. Spelta, “Mixed Sky-Hook and ADD: approaching the filtering limits of a semi-active suspension,” Trans. ASME, J. Dyn. Sys. Meas. Control, vol. 129, no. 4, pp. 382–392, Jul. 2007.Web of ScienceGoogle Scholar

  • 10.

    Y. Wang and K. Utsunomiya, “A sub-optimal control design of a semi-active vibration reduction system,” in Proc. 2013 ACC, Washington, DC, 2013, pp. 4110–4115.Google Scholar

  • 11.

    M. Darouach, “Existence and design of functional observers for linear systems,” IEEE Trans. Automat. Control, vol. 45, no. 5, pp. 940–943, May 2000.CrossrefGoogle Scholar

  • 12.

    T. L. Fernando, H. M. Trinh, and L. Jennings, “Functional observability and the design of minimum order linear functional observers,” IEEE Trans. Automat. Control, vol. 55, no. 5, pp. 1268–1273, May 2010.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    X. Xia and W. Gao, “Nonlinear observer design by observer error linearization,” SIAM J. Control Optim., vol. 27, no. 1, pp. 199–216, Jan. 1989.CrossrefGoogle Scholar

  • 14.

    Y. Wang and A. F. Lynch, “Multiple time scalings of a multi-output observer form,” IEEE Trans. Automat. Control, vol. 55, no. 4, pp. 966–971, Apr. 2010.Web of ScienceCrossrefGoogle Scholar

  • 15.

    J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for nonlinear systems–applications to bioreactors,” IEEE Trans. Automat. Control, vol. 37, no. 6, pp. 875–880, Jun. 1992.CrossrefGoogle Scholar

  • 16.

    M. Hou and R. Patton, “Input observability and input reconstruction,” Automatica, vol. 34, no. 6, pp. 789–794, Jun. 1998.CrossrefGoogle Scholar

  • 17.

    T. Chen and B. A. Francis, Optimal Sampled-data Control systems. New York: Springer-Verlag, 1995.Google Scholar

  • 18.

    N. Giorgetti, A. Bemporad, H. E. Tseng, and D. Hrovat, “Hybrid model predictive control application towards optimal semi-active suspension,” Int. J. Control, vol. 79, no. 5, pp. 521–533, May 2006.CrossrefGoogle Scholar

  • 19.

    M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.CrossrefGoogle Scholar

  • 20.

    R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33, no. 12, pp. 2159–2177, Dec. 1997.CrossrefGoogle Scholar

About the article

Yebin Wang

Yebin Wang received the B. Eng. degree in Mechatronics Engineering from Zhejiang University, Hangzhou, China, in 1997, M.Eng. degree in Control Theory & Control Engineering from Tsinghua University, Beijing, China, in 2001, and Ph.D. in Electrical Engineering from the University of Alberta, Edmonton, Canada, in 2008. Dr. Wang has been with Mitsubishi Electric Research Laboratories in Cambridge, MA, USA, since 2009, and now is a Senior Principal Research Scientist. From 2001 to 2003 he was a Software Engineer, Project Manager, and Manager of R&D Dept. in industries, Beijing, China. His research interests include nonlinear control and estimation, optimal control, adaptive systems and their applications including mechatronic systems.

Kenji Utsunomiya

Kenji Utsunomiya joined Mitsubishi Electric Corp. in 1997, and received Doctoral degree in Mechanical Engineering from Kyoto University in 2015. He is currently a Manager of Mechatronics Department Multi-body Dynamics Group.


Received: 2017-06-13

Accepted: 2018-02-23

Published Online: 2018-03-13

Published in Print: 2018-03-26


Citation Information: at - Automatisierungstechnik, Volume 66, Issue 3, Pages 234–245, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2017-0064.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in