Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology
]

Editor-in-Chief: Jumar, Ulrich

12 Issues per year


IMPACT FACTOR 2017: 0.503

CiteScore 2017: 0.47

SCImago Journal Rank (SJR) 2017: 0.212
Source Normalized Impact per Paper (SNIP) 2017: 0.546

Online
ISSN
2196-677X
See all formats and pricing
More options …
Volume 66, Issue 9

Issues

Gray-box identification with regularized FIR models

Gray-Box Modelle für die Identifikation mit regularisierten FIR Modellen

Tobias Münker
  • Corresponding author
  • Universität Siegen, Department Maschinenbau, Institut für Mechanik und Regelungstechnik – Mechatronik, Paul-Bonatz-Str. 9-11, 57068, Siegen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Timm J. Peter
  • Universität Siegen, Department Maschinenbau, Institut für Mechanik und Regelungstechnik – Mechatronik, Paul-Bonatz-Str. 9-11, 57068, Siegen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Nelles
  • Universität Siegen, Department Maschinenbau, Institut für Mechanik und Regelungstechnik – Mechatronik, Paul-Bonatz-Str. 9-11, 57068, Siegen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-13 | DOI: https://doi.org/10.1515/auto-2018-0026

Abstract

The problem of modeling a linear dynamic system is discussed and a novel approach to automatically combine black-box and white-box models is introduced. The solution proposed in this contribution is based on the usage of regularized finite-impulse-response (FIR) models. In contrast to classical gray-box modelling, which often only optimizes the parameters of a given model structure, our approach is able to handle the problem of undermodeling as well. Therefore, the amount of trust in the white-box or gray-box model is optimized based on a generalized cross-validation criterion. The feasibility of the approach is demonstrated with a pendulum example. It is furthermore investigated, which level of prior knowledge is best suited for the identification of the process.

Zusammenfassung

Als Problemstellung wird die Modellierung linearer dynamischer Systeme betrachtet. Hierzu wird ein neuer Ansatz zur automatischen Kombination von datenbasierten und physikalischen Modellen vorgestellt. Der in diesem Aufsatz vorgeschlagene Ansatz basiert auf der regularisierten Schätzung endlicher Impulsantwortmodelle. Im Gegensatz zur klassischen Kombination physikalischer und datenbasierter Modelle, bei denen einzelne Parameter des physikalischen Modells basierend auf Eingangsdaten geschätzt werden, ist unser Ansatz in der Lage, ebenso Fehler in der Modellstruktur des physikalischen Modells zu berücksichtigen. Dafür wird ein Strafterm für die Abweichung vom physikalischen Modell bei der Modellierung des datenbasierten Modells berücksichtigt und die Höhe des Strafterms auf Basis des verallgemeinerten Kreuzvalidierungskriteriums optimiert. Die Machbarkeit des Ansatzes wird an dem Beispiel eines an einer Feder befestigten beweglichen Pendels illustriert. Weiterhin wird untersucht, welcher Umfang an Vorwissen zur Identifikation des Prozesses am Besten geeignet ist.

Keywords: system identification; Bayesian methods; FIR system; gray-box modelling

Schlagwörter: Systemidentifikation; Regularisierung; Lineare Systeme; FIR Systeme; Gray-Box Modelle; Bayes-Verfahren

References

  • 1.

    Hirotugu Akaike. A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6):716–723, 1974.CrossrefGoogle Scholar

  • 2.

    Torsten Bohlin. A case study of grey box identification. Automatica, 30(2):307–318, 1994.CrossrefGoogle Scholar

  • 3.

    Torsten Bohlin and Stefan F Graebe. Issues in nonlinear stochastic grey box identification. International Journal of Adaptive Control and Signal Processing, 9(6):465–490, 1995.CrossrefGoogle Scholar

  • 4.

    Tianshi Chen and Lennart Ljung. Implementation of algorithms for tuning parameters in regularized least squares problems in system identification. Automatica, 49(7):2213–2220, 2013.CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Tianshi Chen and Lennart Ljung. Regularized system identification using orthonormal basis functions. arXiv preprint arXiv:1504.02872, 2015.Google Scholar

  • 6.

    Tianshi Chen and Lennart Ljung. On kernel design for regularized LΤΙ system identification. arXiv preprint arXiv:1612.03542, 2016.Google Scholar

  • 7.

    Tianshi Chen, Henrik Ohlsson, and Lennart Ljung. On the estimation of transfer functions, regularizations and Gaussian processes-revisited. Automatica, 48(8):1525–1535, 2012.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Francesco Dinuzzo. Kernels for linear time invariant system identification. SIAM Journal on Control and Optimization, 53(5):3299–3317, 2015.CrossrefWeb of ScienceGoogle Scholar

  • 9.

    Torkel Glad and Lennart Ljung. Control theory. CRC press, 2000.Google Scholar

  • 10.

    Rolf Isermann. Mechatronic systems: fundamentals. Springer Science & Business Media, 2007.Google Scholar

  • 11.

    Lennart Ljung. System identification, volume 2. Prentice-Hall, 1999.Google Scholar

  • 12.

    Anna Marconato, Maarten Schoukens, and Johan Schoukens. Filter-based regularisation for impulse response modelling. IET Control Theory & Applications, 11(2):194–204, 2016.Web of ScienceGoogle Scholar

  • 13.

    Tobias Münker, Julian Belz, and Oliver Nelles. Improved incorporation of prior knowledge for regularized FΙR model identification. In American Control Conference (ACC), 2018 (accepted for publication).Google Scholar

  • 14.

    Tobias Münker and Oliver Nelles. Sensitive order selection via identification of regularized fir models with impulse response preservation. In IFAC Symposium on System Identification (SYSID18), 2018 (submitted for publication).Google Scholar

  • 15.

    Oliver Nelles. Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer Science & Business Media, 2001.Google Scholar

  • 16.

    Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint. Automatica, 69:137–149, 2016.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Gianluigi Pillonetto and Giuseppe De Nicolao. A new kernel-based approach for linear system identification. Automatica, 46(1):81–93, 2010.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    Gianluigi Pillonetto, Francesco Dinuzzo, Tianshi Chen, Giuseppe De Nicolao, and Lennart Ljung. Kernel methods in system identification, machine learning and function estimation: A survey. Automatica, 50(3):657–682, 2014.CrossrefWeb of ScienceGoogle Scholar

About the article

Tobias Münker

Tobias Münker received his B. Sc. from Universität Siegen in 2010 and his M. Sc. from TU Darmstadt in 2012. After 3 years of industry experience, he has been working towards his Ph. D. under the supervision of Prof. Nelles since 2015. His main research interests are new techniques for the identification of linear and nonlinear systems.

Timm J. Peter

Timm J. Peter graduated with a Master of Science degree from Universität Siegen in 2018. After finishing his masters thesis about regularized FIR models he joined the working group Automatic Control – Mechatronics of Prof. Nelles as a research assistant. His research topics focus on new techniques for linear and nonlinear system identification.

Oliver Nelles

Oliver Nelles is Professor at the University of Siegen in the Department of Mechanical Engineering and chair of Automatic Control – Mechatronics. He received his doctor’s degree in 1999 at the Technical University of Darmstadt. His key research topics are nonlinear system identification, dynamics representations, design of experiments, metamodeling and local model networks.


Received: 2018-03-02

Accepted: 2018-06-20

Published Online: 2018-09-13

Published in Print: 2018-09-25


Citation Information: at - Automatisierungstechnik, Volume 66, Issue 9, Pages 704–713, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0026.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in