1.

S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad. State of the Art in Research on Microgrids: A Review. *IEEE Access*, 3(1):890–925, 2015. CrossrefWeb of ScienceGoogle Scholar

2.

D. E. Olivares, C. A. Cañizares and M. Kazerani. A centralized optimal energy management system for microgrids. In *2011 IEEE Power and Energy Society General Meeting*, pages 1–6, 2011. Google Scholar

3.

R. Okubo, S. Yoshizawa, Y. Hayashi, S. Kawano, T. Takano and N. Itaya. Decentralized Charging Control of Battery Energy Storage Systems for Distribution System Asset Management. In *2019 IEEE Milan PowerTech*, pages 1–6, 2019. Google Scholar

4.

D. P. Bertsekas and J. N. Tsitsiklis. *Parallel and Distributed Computation: Numerical Methods*. Belmont, MA, USA: Athena Scientific, 1989. Google Scholar

5.

S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. *Foundations and Trends in Machine Learning*, 3(1):1–122, 2011. Google Scholar

6.

B. Houska, J. Frasch and M. Diehl. An Augmented Lagrangian Based Algorithm For Distributed Nonconvex Optimization. *SIAM J. Optim.*, 26(2):1101–1127, 2016. CrossrefWeb of ScienceGoogle Scholar

7.

P. Braun, T. Faulwasser, L. Grüne, C. M. Kellett, S. R. Weller and K. Worthmann. Hierarchical distributed ADMM for predictive control with applications in power networks. *IFAC J. Syst. Control*, 3:10–22, 2018. CrossrefGoogle Scholar

8.

A. Engelmann, Y. Jiang, T. Mühlpfordt, B. Houska and T. Faulwasser. Towards Distributed OPF using ALADIN. *IEEE Trans. Power Syst.*, 34(1):584–594, 2019. CrossrefGoogle Scholar

9.

L. Grüne and J. Pannek. *Nonlinear Model Predictive Control. Theory and Algorithms*. Springer, London, 2 edition, 2017. Google Scholar

10.

M. Khalid and A. V. Savkin. A model predictive control approach to the problem of wind power smoothing with controlled battery storage. *Renewable Energy*, 35(7):1520–1526, 2010. CrossrefWeb of ScienceGoogle Scholar

11.

A. Parisio, E. Rikos and L. Glielmo. A model predictive control approach to microgrid operation optimization. *IEEE Trans. Control Syst. Technol.*, 22(5):1813–1827, 2014. CrossrefWeb of ScienceGoogle Scholar

12.

G. Graditi, M. L. Di Silvestre, R. Gallea and E. R. Sanseverino. Heuristic-Based Shiftable Loads Optimal Management in Smart Micro-Grids. *IEEE Trans. Ind. Informat.*, 11(1):271–280, 2015. CrossrefGoogle Scholar

13.

P. Braun, L. Grüne, C. M. Kellett, S. R. Weller and K. Worthmann. Model Predictive Control of Residential Energy Systems Using Energy Storage & Controllable Loads. *Progress in Industrial Mathematics at ECMI 2014. Mathematics in Industry*, 22:617–623, 2016. Google Scholar

14.

R. R. Appino, J. Á. G. Ordiano, R. Mikut, T. Faulwasser and V. Hagenmeyer. On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages. *Applied Energy*, 210:1207–1218, 2018. CrossrefWeb of ScienceGoogle Scholar

15.

R. R. Appino, M. Muñoz-Ortiz, J. Á. G. Ordiano, R. Mikut, V. Hagenmeyer and T. Faulwasser. Reliable Dispatch of Renewable Generation via Charging of Time-varying PEV Populations. *IEEE Trans. Power Syst.*, 34(2):1558–1568, 2018. Web of ScienceGoogle Scholar

16.

R. H. Lasseter. Smart distribution: Coupled microgrids. *Proceedings of the IEEE*, 99(6):1074–1082, 2011. CrossrefWeb of ScienceGoogle Scholar

17.

P. Braun, P. Sauerteig and K. Worthmann. Distributed optimization based control on the example of microgrids. In M. J. Blondin, P. M. Pardalos and J. S. Sáez, editors, *Computational Intelligence and Optimization Methods for Control Engineering*, volume 150 of *Springer Optimization and Its Applications*. Springer International Publishing, 173–200, 2019. Google Scholar

18.

A. Sinha, P. Malo, and K. Deb. A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications. *arXiv preprint arXiv:1705.06270*, 2017. Google Scholar

19.

S. Grundel, P. Sauerteig and K. Worthmann. Surrogate Models For Coupled Microgrids. In I. Faragó, F. Izsák and P. Simon, editors, *Progress in Industrial Mathematics at ECMI 2018*, 30, 1 edition, Springer International Publishing, 2019. DOI: . CrossrefGoogle Scholar

20.

M. D. Buhmann. *Radial basis functions: Theory and implementations*, volume 12. Cambridge university press, 2003. Google Scholar

21.

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed and H. Arshad. State-of-the-art in artificial neural network applications: A survey. *Heliyon*, 4(11), 2018. Web of ScienceGoogle Scholar

22.

H. Zhang, F. Xu and L. Zhou. Artificial neural network for load forecasting in smart grid. In *2010 International Conference on Machine Learning and Cybernetics*, volume 6, pages 3200–3205, 2010. Google Scholar

23.

P. Siano, C. Cecati, H. Yu and J. Kolbusz. Real Time Operation of Smart Grids via FCN Networks and Optimal Power Flow. *IEEE Trans. Ind. Informat.*, 8(4):944–952, 2012. CrossrefGoogle Scholar

24.

K. Worthmann, C. M. Kellett, P. Braun, L. Grüne and S. R. Weller. Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage. *IEEE Trans. Smart Grid*, 6(4):1914–1923, 2015. CrossrefWeb of ScienceGoogle Scholar

25.

E. L. Ratnam, S. R. Weller, C. M. Kellett and A. T. Murray. Residential load and rooftop PV generation: an Australian distribution network dataset. *Internat. J. Sustain. Energy*, 2015. Google Scholar

26.

J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer, 2006. Google Scholar

27.

S. N. Lophaven, H. B. Nielsen and J. Søndergaard. DACE-A Matlab Kriging toolbox, version 2.0. Technical report, 2002. Google Scholar

28.

I. Goodfellow, Y. Bengio and A. Courville. *Deep Learning*. MIT Press, 2016. Google Scholar

29.

C. F. Higham and D. J. Higham. Deep Learning: An Introduction for Applied Mathematicians. *arXiv preprint arXiv:1801.05894*, 2018. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.