1.
Gauthier, J.; Hammouri, H.; Othman, S.: A simple observer for nonlinear systems applications to bioreactors. In: IEEE Transactions on Automatic Control 37 (1992), June, Nr. 6, S. 875–880.CrossrefGoogle Scholar
2.
Goodall, R.; Li, H.: Solid Axle and Independently-Rotating Railway Wheelsets – A Control Engineering Assessment of Stability. In: Vehicle System Dynamics 33 (2000), Nr. 1, S. 57–67.CrossrefGoogle Scholar
3.
Heckmann, A.; Keck, A.; Kaiser, I.; Kurzeck, B.: The Foundation of the DLR RailwayDynamics Library: the Wheel-Rail-Contact. In: 10th International Modelica Conference 2014, 2014 (Linköping Electronic Conference Proceedings), S. 465–475.Google Scholar
4.
Heckmann, A.; Schwarz, C.; Bünte, T.; Keck, A.; Brembeck, J.: Control Development for the Scaled Experimental Railway Running Gear of DLR. In: 24th IAVSD 2015, Bd. 1, CRC Press 2016, 2016 (The Dynamics of Vehicles on Roads and Tracks), S. 909–918.Google Scholar
5.
Heckmann, A.; Lüdicke, D.; Grether, G.; Keck, A.: From Scaled Experiments of Mechatronic Guidance to Multibody Simulations of DLR’s Next Generation Train Set. In: 25th International Symposium on Dynamics of Vehicles on Roads and Tracks, CRC Press, 2017 (Dynamics of Vehicles on Roads and Tracks), S. 525–530.Google Scholar
6.
Hermann, R.; Krener, A.: Nonlinear controllability and observability. In: IEEE Transactions on automatic control 22 (1977), Nr. 5, S. 728–740.CrossrefGoogle Scholar
7.
Jaschinski, A.: On the Application of Similarity Laws to a Scaled Railway Bogie Model. TU Delft, Diss., 1990.Google Scholar
8.
Joos, H.; Bals, J.; Looye, G.; Schnepper, K.; Varga, A.: A multi-objective optimisation-based software environment for control systems design. In: IEEE CACSD, 2002, S. 7–14.Google Scholar
9.
Julier, S.; Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems. In: Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulations and Controls, 1997, S. 182–193.Google Scholar
10.
Kalker, J.: A Fast Algorithm for the Simplified Theory of Rolling Contact. In: Vehicle System Dynamics 11 (1982), Nr. 1, S. 1–13.CrossrefGoogle Scholar
11.
Kurzeck, B.; Heckmann, A.; Wesseler, C.; Rapp, M.: Mechatronic track guidance on disturbed track: the trade-off between actuator performance and wheel wear. In: Vehicle System Dynamics 52 (2014), June, Nr. 1, S. 109–124.CrossrefWeb of ScienceGoogle Scholar
12.
Kurzeck, B.; Valente, L.: The mechatronic track guiding concept for the DLR “Next Generation Train”. In: 8th International Conference on Railway Bogies and Running Gears, 2010, S. 313–321.Google Scholar
13.
Mei, T.; Li, H.: Control design for the active stabilization of rail wheelsets. In: Journal of Dynamic Systems, Measurement, and Control 130 (2008), Nr. 1, S. 011002–011002–9.Web of ScienceGoogle Scholar
14.
Röbenack, K.: Nichtlineare Regelungssysteme – Theorie und Anwendung der exakten Linearisierung. 1. Aufl. Berlin Heidelberg New York: Springer-Verlag, 2017. – ISBN 978–3–662–44091–9.Google Scholar
15.
Schaffner, J.: Zum Beobachterentwurf für nichtlineare Systeme mit mehreren Messgrössen. VDI-Verlag, 1997 (8]: [Fortschritt-Berichte VDI). – ISBN 978–3–1836–2008–1.Google Scholar
16.
Schwarz, C.; Heckmann, A.; Keck, A.: Different Models of a Scaled Experimental Running Gear for the DLR RailwayDynamics Library. In: 11th International Modelica Conference, 2015, S. 441–447.Google Scholar
17.
Wan, E.; Merwe, R. V. D.: The Unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000, S. 153–158.Google Scholar
Comments (0)