Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of West University of Timisoara - Mathematics and Computer Science

The Journal of West University of Timisoara

Editor-in-Chief: Sasu, Bogdan

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.01

Open Access
Online
ISSN
1841-3307
See all formats and pricing
More options …

Neuro-evolution in Zero-Sum Perfect Information Games on the Android OS

Gabriel Iuhasz / Viorel Negru
Published Online: 2013-01-15 | DOI: https://doi.org/10.2478/v10324-012-0013-4

Abstract

In recent years significant work has been done to use Neural Networks in game AI, and harness the advantages of such a technique. This paper would like to show that it is possible using neuroevolution to evolve a neural network topology optimized for a given task and avoiding over or under complexification by human hands. In order to illustrate this we implement two agents capable of playing simple zero sum perfect information games with the help of the genetic algorithm Neuroevolution of augmenting topologies. To illustrate this optimization we load the resulting topologies onto an Android OS game app.

Keywords: neural networks; neuroevolution; mobile platform; Game AI; zero sum games; Android OS

  • 1. A. Narayek, Intelligent Agents for Computer Games, Computers and Games Second International Conference, (2000), 414-422Google Scholar

  • 2. C. Kumar and D. Fogel, Evolution, neural networks, games, and Intelligence, Proceedings of the IEEE volume 87 Issue 9, (2000), 1471-1496.Google Scholar

  • 3. M. Buckland, AI Techniques For Game Programming, Premier Press, (2006), 480.Google Scholar

  • 4. K. Stanley, Efficient Evolution of Neural Networks through Complexification, Department of Computer Science University of Texas, 2004.Google Scholar

  • 5. M. van der Heijden, S. Bakkes, and P. Spronck, Dynamic formations in realtime strategy games, Proceeding of the IEEE Symposium on Computational Intelligence, (2008), 47-54.Google Scholar

  • 6. J. DiMarzio, Android A Programmers Guide, McGraw-Hill Osborne Media first edition, (2008), 400.Google Scholar

  • 7. A. Agogino, L. Stanely, and R. Miikkulainen, Online Interactive Neuroevolution, Neural Processing Letters, (1999), 100-109.Google Scholar

  • 8. D. Fogel, Mind Games - Evolving a Checkers Player Without Relying on Human Experties, ACM - Intelligence New Visions of AI in Practice, 11, 2, 2000.Google Scholar

  • 9. J. Schrum, Neuro-Evolution in Multi-Player Pente, <http://www.cs.utexas.edu/(tilde)schrum2/>, 2006.Google Scholar

  • 10. L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, Go-Moku and Threat-Space Search, Departement of Computer Science University of Limburg, 1993.Google Scholar

  • 11. Jerome J.F. DiMarzino, Android A Programmers Guid, McGraw-Hill Osborne Media, First Edition, (July 2008), 400.Google Scholar

  • 12. Vladimir Silva, Pro Android Games, Apress, First Edition, (2008), 300.Google Scholar

  • 13. Tom Schaul and Jurgen Schmibhuber, A Scalable Neural Network Architecture for Board Games, 2007.Google Scholar

  • 14. M. Gruttner, F. Sehnke, T. Schaul, and J. Schmidhuber, Multi-Dimensional Deep Memory Atari-Go Players for Parameter Exploring Policy Gradients, 2008.Google Scholar

  • 15. C. Fahey, Neural network with learning by backward error propagation, www.colinfahey.com <http://www.colinfahey.com>, 2004.Google Scholar

  • 16. T. Schaul and J. Schmidhuber, A Scalable Neural Network Architecture for Board Games, Proceedings of the IEEE Symposium on Computational Intelligence in Games, (2008), 324-334.Google Scholar

  • 17. M. Buro, Real-time strategy games: A new AI research challenge, Proceedings of the International Joint Conference on AI, (2003), 485-486Google Scholar

  • 18. K. O. Stanley, B. D. Bryant, I. Karpov, and R. Miikkulainen, Real-time evolution of neural networks in the NERO video game, Proceedings of the Twenty- First National Conference on Artificial Intelligence, (2008), 302-314.Google Scholar

  • 19. A. Shantia, E. Begue, and M. Wiering, Connectionist Reinforcement Learning for Intelligent Unit Micro Management in StarCraft, International Joint Conference on Neural Networks, (2011), 234-246. Google Scholar

About the article

Published Online: 2013-01-15

Published in Print: 2012-12-01


Citation Information: Annals of West University of Timisoara - Mathematics, ISSN (Print) 1841-3293, DOI: https://doi.org/10.2478/v10324-012-0013-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in